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A method of solution is presented, which, when applied to the elasto-
plastic analysis of plates having a v-notch on one edge and subjected
to pure bending, will produce stress and strain fields in much greater
detail than presently available. Application of the boundary integral
equation method results in two coupled Fredholm-type integral equations,
subject to prescribed boundary conditions. These equations are re~
placed by a system of simultaneous algebraic equations and solved by a
successive approximation method employing Prandtl-Reuss incremental
plasticity relations. The method is first applied to number of elasto-
static problems and the results compared with available solutions.

Good agreement is obtained in all cases. The elasto-plastic analysis
provides detailed stress and strain distributions for several cases of
plates with various notch angles and notch depths. A strain hardening
material is assumed and both plane strain and plane stress conditions
are considered. The generalized stress intensity factor K% is intro-
duced. Rice's J integral is calculated and its relaticn "to the gen-
eralized stress intensity facrtor is presented. Notch opening displace-
ments are calculated and, for one case, are ccmpared with the available
experimental results showing very good agreement.
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Chaptef 1
Intfoduction
The principal objective of fracture mechanics is the prediction

of the load at which the structure, weakened by a crack, will fail,
Knowledge of the stress distribution near the crack tip is of funda-
mental importance in evaluating this load at failure. Structures of
high strength, normally ductile materials have failed in quasi-brittle
fashion at loads well below design. The failures were traced to the

presence of flaws or cracks.

The failures of T-class Liberty Ships in the Second World War,
and losses of de Haviland "Comet" aircraft (1953-1954) stimulated a
major research effort in fracture mechanics. In the past most of the
theoretical analysis was based on planar elasticity.

The importance of the presence of a flaw or crack in stressed
bodies was recognized by Griffith [1,2] who, using the solution for
the elliptic cavity in an infinite plate as obtained by Inglis [3],
formulated the problem in energy terms. Griffith proposed that crack
propagation would take place when the elastic energy released due to

crack extension was equal or greater than the energy absorbed by the



the fracture process. The value of fracture load Ous for a given

craék length, was given as oc = Y2ET/ma for plane stress case and

o, = /EET/ﬂa(l - uz) for plane strain case, where a- one half of the
crack length, E - Young's modulus, u - Poisson's ratio, and T -
surface tension of the material along the crack.

For the case of brittle materials, Griffith assumed that the
effects of plastié behavior prior to fracture could be neglected.

This assumption makes unrealistic use of this theory for quasi-brittle
fractures, where small amounts of plastic deformation occur in .the
vicinity of the crack tip.

Irwin [4] and Orowan [5,6] suggested a modification to Griffith's
theory, which would account for the limited amount of plastic deforma-
tion. They replaced the surface energy T in Griffith's equation by
the energy spent in localized plastic deformation. This modification
forms the basis for linear fracture mechanics.

The critical strain energy release rate was re-defined by Irwin
[7,8,9] as a crack extension force G, and reaching a critical value
Gc when the crack starts to propagate. The force Gc is frequently
called the fracture toughness. Based on the analysis due to Wester-
gaard [10] and Sneddon [11], Irwin [7,8] introduced the stress inten-
sify factor K, which describes the stress distribution in the vicinity
of the crack tip, and is dependent only on geometry and loading. He
noted that the stress intensity factor K 1is proportional to the

square root of the force G tending to cause crack extension, i.e.,

-



K2 = EG for plane stress and K2'= EG/(1 - u2) for plane strain con-

ditions.

“ The above analysis assumes that the plastic strains are confined
to the zone in the vicinity of the crack tip, which is small in com-
parison to the crack size. Under this restriction the stress relaxa-
tion by plastic flow neér the crack surfaces will have a relatively
small influence upon the calculation of the force G.

Subsequent investigations by Williams [12,13], Wigglesworth [14],
Erdogan [15], Irwin [16] and others demonstrated that, for identical
values of stress intensity factors K, identical elastic stress fields
are obtained in the immediate vicinity of the crack tip.

A summary of the results based on the plane theory of elasticity
is presented by Paris and Sih [17].

Most of these results come from applications of eigenfunction
expansions, complex variable formulation, and conformal mapping
techniques.

Using boundary collocation technique, solutions to the single
edge crack plate subjected to various type loads were obtained by
Gross, Srawley and Brown [18] and by Gross and Srawley [19,20]. Ap-
plying the same method Gross [21] and Gross and Mendelson [22] ob-
tained solutions to plane elastostatic problems of v-notched plates
subjected to various types of loading. Bueckner [23] analyzed sev-
eral crack problems, including the edge-notched strip in bending. His

method of analysis was based on the representation of a crack by a



continuous distribution of dislocation singularities, leéding to a
regular Fredholm integral equaﬁion. |

The method of potential was applied by Walker [24] in solving
selected edge-notched plate problems. Hays [25] used finite element
method combined with evaluation of Rice's contour integral [26] in
determination of stress intensity factors for various cases of a cracked
plate subjected to uniform tension or pure bending.

Elastic analysis is now widely accepted for cases where small
scale yielding took place prior to fracture. However, when the plastic
zone that develops prior to fracture is not small in comparison with
the crack length and other geometrical parameters, elastic-plastic
treatment of the problem ié essential.

Mathematical theory of plasticity is most readily applied to
elastic-plastic analysis of longitudinal cracks in cylindrical bars
subjected to pure torsion. The limiting case of the edge-notched in-
finitely thick plate subjected to pure shear loading (anti-plane,
tearing mode, II1 -~ see Section 4,3) was considered by Hult and
McClintock [27). Taking into account elastic-perfectly plastic be-
havior of the material, they obtained stress and strain distribution
around the'tip of the notch.

Using conformal mapping and relaxation techniques, Koskinen [28]
provided the solution to grooved plate of finite thickness subjected
to longitudinal shear. At low strain levels the shape of elastic-
plastic boundary was found to be in good agreement with the one ob-

tained by Hult and McClintock [27]}. The singular behavior of the



environment near the cr. - tip was not eliminated by plastic behavior.

Based on the res.” . . .f anti-plane elastic ~ perfectly plastic
analysis McClintock aﬁa i;ﬁin [29] confirmed the proposed correction
by Irwin [30] that, for sm=!1 scale yielding, the elastic field out-
side the plastic regi-.. ¢=-.identical to that which would be predicted
for an elastic body with a crack whose length is adjusted to

0 o
half-lengths respecti{rely and ry = KZ/ZWCZ) where %o is the uni-

‘a = a, + ry. ‘Here a anﬁ a are initial and the adjusted crack
axial tensile yield stress. However, for larger amounts of yielding,
McClintock and Irwin {277 -.oncluded that more complete study of the
stress and strain distribution near the tip of cracks under mode I
loading is needed befo:_ fracture criteria for such cases could be
formulated.

The influence of strain hardening on the size of the plastic zone
for the case of anti-plane loading was discussed by Rice [31,32]. He
found that the singulai behavior of stresses and strains at the crack
tip was influenced by the strain hardening properties of the material,
the sum of stress and sirain singularities remaining approximately
constant and equal to 1nity. The size of the plastic zone was reduced
with increasing values 0f the strain hardening parameter.

Swedlow et al [33] and Swedlow [35], using finite element tech-~
nique and Prandtl—Reus_‘incremental plasticity relations, analyzed
stress and strain distritutions in work-hardening cracked plates sub-

jected to uniaxial tension. The results [33,34,35] confirm the sin~

gular behavior of the stresses and strains in the vicinity of the



crack tip and, for the first time, give approximate information on the
growth of the plastic enclave for the case of in-plane loading. Swed—
low [35] pointed out that for a plane strain case the plastic enclave
increases at a much lower rate than for a plane stress case.

Using the total deformation theory of plasticity in conjunction
with hardening stress-strain relations, Rice and Rosengren [36] and
Hutchison [37,38] produced near-tip solutions for cracked plates
loaded in-plane in pure shear or in tension. As in the case of anti-
plane loading, the product of stress and strain exhibits singularity
varying inversely with distance from the tip of the crack in all
cases considered. Also, these authors have shown that the stress and
strain fields at a crack tip could be determined from the parameter
characterizing loading and geometry, and that this parameter is a
function of Rice's path-independent contour integral [39]. Hutchison
[38] noted that, for perfectly plastic material, the plane strain case
gives higher tensile stress ahead of the crack tip than plane stress
by an approximate factor of 2.5.

From this brief survey of the results of elastic and elastic-
plastic stress analysis of cracked bodies, it is apparent that the
linear theory of elasticity provides solutions leading to computations
of fracture toughness in terms of the stress intensity factor K.

To establish interaction between elasto-plastic deformations and
the fracture process, knowledge of the stress and strain distributions

near the crack tip is of fundamental importance. The most widely used



techniques of solﬁtion, such as finite difference or finite element
methods, do not provide good énough resolution in the vicinity of the
crack tip, but do give an indication of the shape and growth of the
plastic zone. Therefore, furthér work is needed to improve the ac-
curacy of the results, eépecialiy in the immediate vicinity'of the
crack tip.

The primary objective of this dissertation is to present a method
of solution which, when applied to elasto-plastic analysis of the
crack tip énvironment, will produce stress and strain fields in much
greater detail than presently available.

The boundary integral equation method, whose development is dis-
cussed in references [40 to 43], seems to be a logical choice. This
method of solution utilizes Green's second theorem to reduce the non-
homogeneous biharmonic equation for the Airy stress function to two
coupled Fredholm-type integral equations, which must satisfy specified
boundary conditions. A numerical method is utilized in which two
coupled integral equations of the Fredholm-type are replaced by a sys-
tem of simultaneous algebraic equations and solved by a digital com-
puter, yielding stresses and strains at any desired location through-
out the interior of the region.

The integral equation method has been utilized in the solution of
various plane elastostatic problems. A number of torsion problems
have been solved by Jaswon and Ponter [44] for bars with selected

cross-sections, such as hollow ellipse, hollow rectangle and circles



with curv-d «..i.v ... Rim and Henry [45] obtained solutions for a cir-
cular disk su°, ...d to diametrally opposite concentrated forces and
to an infinite platé with an elliptic holg under uniform internal
pressure. They repcrt an excellent agreement with the known analyt-
ical results;: bégedin and Brickell [46] applied an integral equation
method to the case éf elastically loaded thin corner plate, and using
this method,_Wélke; [24] obtained solutions, yielding very good re-
sults for a number of plane problems, including edge-notched plate
subjected to simple tension.

The boundary integral equation method has never been applied in
the solution of any elasto-plastic problem. The objective of this
study is to provide a general formulation of this method for plane
problems where plastic deformation is occuring, and in particular to
obtain a solution for a plane problem with a geometric singularity.

A single edge v-notched specimen subjected to pure bending load
is particularily efficient for fracture toughness studies. It is
widely recommended by ASTM Committee E24 on Fracture Testing of
Metals. Since no solution of this problem has been published, the in-
vestigations of this thesis will be devoted to this geometry and load-
ing.

Difficulties related to the singularity at the notch tip required
special treatment of the neighboring boundary and interior field. The
treatment of the boundary is presented in Chapter 4 and the interior

field in Chapter 5.



The elastic case is considered first and results compared with

those obtained by others. Then the method is extended to the elasto-’

plastic case. A strain hardening material is assumed, with strain
hardening parameter m = 0.05 or m = 0.10. Detailed results are
given for plates with various notch angles and notch depths for plane

strain or plane stress conditions.

B e ey ——
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Chapter 2

Statement of the Problem

2.1 Physical Problem

Consider a rectangular plate with a single edge v-notch, subjected

to pure bending load (Fig. 1). Determine:

(a)
(b)

(c)

The elasto-plastic state of stress in the plate.
Stress intensity factor and Rice's J integral in the vicinity
cf the tip of the notch.

Displacement at the edge of the v-notch.

The cases of plane strain and plane stress conditions are to be consid-

ered.

The calculations will be performed for varying notch angles, notch

depths, and strain hardening parameters.

2.2 Assumptions

The following assumptions are made:

(a)

(b)

(C)‘

(d)
(e)

The deformations are infinitesimal, i.e., quadratic terms in
strain tensor are set to zero.

Body forces are neglected.

The effect of inertia is small and can be neglected.

The material is homogeneous and isotropic.

The material strain hardens isctropically.



Chapter 3
Mathematical Problem

3.1 Biharmonic Equation

To determine the state of stress in a plane elasto-plastic prob-
lem, it is necessary to solve the differential equations of equilib- -
rium, subject to prescribed boundary conditions. To assure the condi-
tion of continuity of the body the compatibility equation must also be
satisfied.

For a plane strain or plane stress pfoblem the equations of equi-

librium in Cartesian coordinates are as follows:

90 a0
_._X+____}EX=O
ax oy
(B
a0 90
.S ARSI A\
9x ay
The compatibility equation is
Bzex Bzey Bzexz
+ -2 =0 (2)
8y2 sz 0xX 3y

The stress-strain relations for the plane strain condition, using

incompressibility condition in plastic range [51], are

11
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™
it

1, _ W P P
E[ox u(oy + oz)] + € + Asx

1 P P
= = - _
€ E[o u(o + oz)] + & + Ae

? (3)

=X, _ P _ P _ ,P_ P _
€ E[0Z u(ox + cy)] £ ey Aex Aey =0

LU P D
Xy E Xy Xy Xy . _
where ez, ss, and ezy' represent the accumulation of plastic strain

increments from the beginning of the loading history up to, but not in-

P

cluding the current increment of the load, and Aez, Aeg, and Asxy

are the increments of plastic strain due to the current increment of
load.

For the plane stress condition we have

-
1 _ P P
€ = F (ox ucy).+ €y + Aex
1 12 P
e == (o - uc + €5 + Ac
y E ( y H X) y y
? ()
e = -2 (6 +0) - eP - P - AeP - AEP
2 E X y X y X y
€ = 1+ o + ep + Aep
Xy E Xy Xy xy

The incremental theory of plasticity, von Mises yield criterion and the
flow rule associated with it result in the Prandtl-Reuss stress-strain

relations [51], which for the plane strain case are



20e y z >
Ae
AP = —~B-(20 -g =-0) = - reP - aeP
z 20e z X y X y
3 Ae
b =2 PR
Xy 2 ¢ Xy
e —
where the equivalent plastic strain increment is
2 2 2 2
Ae = — (Aep) + (Aep) + 2eP.nef + (Aap )
p /3 X y x ¥y Xy

and the equivalent stress is

2
c 72

_1 _ 2 _ _ 2 2
c = . N/(Ox cy) + (oy oz) + (oz ox) + 60x

For the plane stress conditions

p Ae -
AEx T 20 (zcx - c,y)
e
P Ae
Aey = EEE-(ZO -0 )
e
Ae : >
AP = - P (c. +0) = - peP -~ aeP
z ZOe X y X y
3 Ae
Aep =22y
Xy 2 ¢ Xy
e .z

y

(5)

(6)

(7

(8)

(9)

13



14

with equivalent plastic strain incfément Aeé defined by equation (6).

fhe equivalent plastic strain increment Aep and the equivalent
stress 0o, are related thru the uniaxial”tensile stress-strain curve.
For a material with linear strain hardening parameter m this relation-
ship is shown in Fig. 2.

The Prandtl-Reuss equations can be expressed in terms of strains
only. This form, used in the iterative process of calculating plastic
strains, improves the stability and speeds up the convergence process
[52].

Using standard indicial notation, the total strains can be written

.. =¢e°. + P, + aeP, (10)
1] 1] 1j 1]

where, elastic component of the total strain is given by

e _ 141y _ u
i3 £ %15 - %13 E %ii (an
and
eij - is accumulated plastic strain up to, but not including,

‘the current increment of load
Aegj - is the increment of plastic strain due to the current
increment of load

We define the modified total strains as

= - p
eiJ = €45 Eij (12)
Then
1)
€.. = €., + AeP, (13)



The equivalent modified total strain is now defined as

N3 1 ) ' v 2 ' v 2 12 |
= ?; ﬂ’(ex - ey) + (ex - ez) + (;y - sz) + 6€xy (14)

£
et
The new plastic strain increment~total strain relations, an equiv-

alent to Prandtl-Reuss equations, are

Ae -
AeP = —L2 e - - eY)
x 3e X y z
et
p Ae , ,
Ae” = (2¢ - ¢ - ¢)
y 3€et_ y X
Ae > (15)
AeP = s (25' N (Aep + Aep)
z 3e z y X y
et
Ae
Aep = 6—2 E;
Xy €, XY )

The equivalent modified total strain can be related to the uniaxial

stress-strain curve (Fig. 2) by the following expression

S S 5 T
et 3 E e,i-1
Ae = N
1+ 21+ e
3 E Ae
Pl
where the modified total strain €at is defined by equation (14), the
equivalent stress 9 -1 is defined by equations (7) or (9) and is
’

evaluated at the end of the preceding current load increment, and u
is a Poisson's ratio.
For the material with the linear strain hardening parameter m

the above relation becomes
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_21ty
3

€ . '
pe = =t : E eél—l o (16)
l+"'3- (1 + ) T

m
The stresses are expressed in terms of Airy stress function @(x,y)[47]

satisfying equiﬁibrium equations (1)

82 82 82
o = 9 o = 89 o .= - ——9 (17)
x ayz y aX2 Xy x93y

Substituting stress-strain relations (3) or (4) into compatibility equa-
tion (2) we obtain compatibility relation in terms of stresses.
For plane strain, we have

2 2 2

: 9 3 o a‘fy 9 OXX, 52 p P 32 p p
(1 - ) + -2 + El—= (e + AeT) + ——= (eF + AcY)
ay2 sz 'Bxay 8y2 X X 3x2 y y
2 P P LRvZ (P P P P
-2 53y (Exy + Aexy) - uEV (ex + Aex + ey + Aay)
32 9% azox
=p(l + | —2+ —L+2 X (18)
2 2 9x9
0x dy
and for plane stress
azcx _aél 320>_<>' | 2 p P 2? P P
+ -2 —>%+ El—5 (el + Ael) + —5 (g + Ael)
3y2 sz_ . 9X0y ayZ X X 8x2 y y
2 P p azoy azcx 320xy
-2 9x oy (Exy + Aexy) T M ayz + 3x2i+ 2 ox0y (19)

bifferentiating the first of the equilibrium equations (1) with respect
to x, and second equation with respect to y and combining them, we

obtain
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2 2 2

9 ox 9 qy 0 Oxy
+ + 2 = 0 (20)
ax2 ayz 9%y

Substituting equations (17) and (20) into equations (18) or (19) yields

Vécp(x,y) = g(x,y) (21)

where the Laplacian V2, is

2 2

vz=’3—2+3—2
ox 3y
and
B (9% p o py 3 Py P
g{x,y) = - T uz ay2 (el + be ) + ;—§~(s] + Aey)

2
-2 2 p P _ME 2P P, P, acP
2 93y (Exy + Aexy{] + . uz v (ex + Aex + ey Asy) (22) .

for plane strain case and

2 2 2

- _pl®" P ..Py L 08 P Py _ o 8 P L AP
g(x,v) E ayz (sx + Aex) + aX2 (ey + Aey) 2 5x3y (Exy + Asxy)

(23)
for plane stress case.

For convenience the following dimensionless quantities are intro-

duced:
x=zZX w5 = Ay
O'OW
- s o v’ -
y E% g(x,y) = 5——§L— > (24)
0
e = €E a - “max
‘0 ‘




Equation (21) and associated with it equations (22) and (23) can now be

written in dimensionless form

~

(25)

(26)

(27)

“h .~~~
Vip(x,y) = 8(x,y)
2 2 ]
VTN o 1 3 pa =P 3 =P pa
g(x,y) - 1 713 (ex + Aex) + = (ay + Aey)
u- {3y X
32 ~ ~ =2
- 2 —= (ep +aeP N+ H v (Ep-+A§p > plane strain
exay ~xy Xy g 2 XX
+ &P + aeP)
y
s
2 2 D
<o 3 P P 3 ~p ~P
%, = — | —= (€7 + AEY) + — (e’ + AcF)
8,9 {;92 ( x X 8%2 ( y y
2 — Ny plane stress
-2 =2 (P o+ aiP)H
9X9y Xy XXJ
J
The following are the boundary conditions to be satisfied by the
stress function @(%,y), as derived in Appendix A (Fig. 1).
1 n{s = 3(;)
along boundary OA and OA P(k,¥) = 03 3 " 0
along boundary AB and A'B’ é(i,?) = 0; %%-= 0

along boundary BC and B'C'’

~ iB 2 2 53
P(X,¥) = - g {(=— + ax” + @8"%x + =
3 3
%,
an
along boundary CD and C'D @(i,?) =

(28)

18
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The plane elasto-plastic problem was reduced to a solution of the non-
homogeneous biharmonic equation (25) subject to boundary conditions (28)
and applicable plasticity relations.

3.2 Integral Equation Method

The method of solution used in this dissertation utilizes Green's
second theorem to reduce the non-homogeneous biharmonic equation (25)
to two coupled, Fredholm type, integral equations, which must satisfy
specified Boundary conditions (28).

The fundamental theory related to these integral equations, the
question of existence and uniqueness of solutions are presented in work
by Jaswon [40], Sym [41,42], and Rizzo F, J [43], and references
[48,49,50].

Consider two functions u(x,y) and v(x,y) having continuous de- .
rivatives of first and second order in simply connected region R,
bounded by a sectionally smooth curve C. The direction of the line
integral and the positivé outward normal is shown in Fig. 3.

Green's Second Theorem [48,49] states

u/bp(uvzv - vvzu)dxdy
R

(29)

I
éS“v
e
b
o
<
gl
o

If we let
u=Vvoe (30)

then it follows, that



p |
J (V2¢V2;;~‘ féf}dxdy = V2®-§X -V 9 (V2¢D ds
oo C on on

R ey L

or
N
JPJP V2¢V2v dxdy = UCJ;'EV 7 Axdy + U/)[: @'—~ - g% (Vzéﬁ ds (31)
R

since the left hand si.a ot equatlon (31) is symmetric with respect to

functions @(X,y) aﬁd v(x,y) we can also write

n ~] .
J U/lvzwvzv dxdy = ) / mV v dxdy + U/)[Y v ——--@ (V v)| ds (32)
X i
Subtracting equation (32) from equation (31) yields
S L’ 4 R .acp 2
S @V'v - vV m)dxdy‘:lbx ) 5;—(V v) - F™y Vv
R Ci_ :
2 9v 3 2
+VQP-8;—VE(V(D) C?S (33)
3.2.1. Solution of Harmonic Problem
Let us introduce fﬁnction ®(x,y) such that
_ o2
¢ = V9 (34)

Y

Substituting equation {34) into equation (21) yields
) _
Vie(x,y) = g(x,y) (35)

Let r(x,y,t,n) be tle distance between any two points P(x,y) and
q(£,n) in region &, .»& shown in Fig. 3, such that P CR+ C and

q TC.

20
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Substituting relations (30), (34), and (35) into Green's Second
Theorem, equation (29), choosing for v, fundamental solution, v = 2n T
yields

JC/n' g(g,n)n r d&dn = Jp o) é%»(ln r) - g% n rl|ds (36)
R

C

and taking into account the singularity at r = 0, as shown in Appen-~

dix B, results in

211<I>(>_{,y) —ffg(i,n)ﬁn r d&dn = fEa—an- (4n ) - —g%)- ¢n rids for PCR
R C

@37
and
o (x,y) - ffg(g n)&n r d&dn = f —BE_ nr) —%— 2n rids for PC C
C
(38)

Equation (38) is similar to Green's Boundary Formula derived by
Jaswon [40], except for the term describing the effect of plastic de-
formations.

3.2.2 Solution of Biharmonic Problem

Combining equation (33) with equations (21) and (34) and choosing

. . 2
this time v = = r &n ¥ we have

3o 2 30 99
ff—pg(in)dsdn= ¢ 5= p)——(QVp+<I>a—p-—~a;pds (39)

Taking into account the singuiarity at r = 0, we obtain, as shown in

Appendix B,
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8nop(x,y) -ff pg(E,n)d&dn = fE an (V p)
. C
2

g—‘? +¢%E—-—-g;§pds for PC R (40)
and
., )
dno(x,y) - ff pg(&,n)d&dn =J][;35 (Vop)
R cl_
—-%g Vzp + & %% - %% p| ds for P C C (41)

Equation (40) would, for a known function g(x,y), give us directly a
solution to the biharmonic equation (21) provided the stress function

P(x,y), égéile, Vzm(x,y), and g%-(vzw(x,y)) were known on the bound-

ary GC.

However, only stress function ¢ and its outward normal deriva-
tive -%g are specified. The values of V2¢ = % and (V P = g:
must be compatible with the specified values of ¢ and Eg? on the
boundary. To assure this compatibility, we have to solve a system of
coupled integral equations (38) and (41), which contain the unknown
functions ¢ and %%.

Once the values of ¢ and %% on the boundary C of region R

are known we can proceed with the calculation of the stress field in
the region R utilizing equations (40) and (17), and appropriate

stress-strain relations.
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3.3 Numerical Analysis

Since it is ge--2r:" ~impossible to solve the system of coupled

» .,

integral equations analytically, a numerical method is utilized in
which the integral equations (38) and (41) are replaced by a system of

2n simultaneous alyeiia.c equations with 2n unknowns, i.e., ¢i
8%, : '

and 7;% where 1 =1, 2, ... n.

For simplicity of notation let us denote the normal derivatives

by prime superscripté.

Let us assume thatb£he function ¢ and its normal derivative ¢'
are piece-wise consiant .n the boundary C. We can divide the bound-
ary into n intervals, not necessarily equal, numbered consecutively

. -

in the direction of inc.zasing s. The center of each interval is
designated as a node a:! ;ssigned constant values of Qi and ¢i.

In a similar mannér the interior of region R can be covered by
a grid, containing m cells, with assigned constant values of the
function g(&,n) and +(x,v,&,n). The cells do not have to have

equal areas. Their ncdal points are located at the centroids.

The arrangement of boundary and interior region subdivisions is

DO
2 -

shown in Fig. 4.
Using the above assumptions, equations (38) and (41) can be

written
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_—
m ' n
"o, - E (g tn 1), ff dgdn = E 3 f (tn 1)’ ds
k=1 Kk i=1 3
n
Yoy [
j=1 J
m n '
2 '
4ng, - E (gp)kff dgdn = E ;4 f (V'p) ds : >
k=1 k _ j=1 3 ’
n n
_E(p; Jvzpds+2® fp'ds
J=l j J= J
n
1
-0 L/"’ds
j=1 J D

(42)
i=1,2,...n

where JP means the integral over the jth segment and (/1Jp means
3 ) k

means the integral over the kth cell.

The stress function ¢ 1is not a constant on loaded boundaries BC
and B'C' as shown by equation (28). The assumption that it is piece-
wise constant may lead to appreciable errors in numerical resulés. To
. overcome this difficuity the summations given by equation (42) for in-

tervals lying on the loaded boundaries and involving stress function

are replaced by direct integration.



Again, for convenience we non-dimensionalize all the distances

and introduce the following

-~

with respect to the width of the plate w

dimensionless quantities

~ 1oy - !
¢=0_. ¢'=——q;w (43)
0 0
To simplify calculations we introduce the following notations. Let
¥,. - dimensionless distance from the itP node to any point
1]
in the jth interval
fik - dimensionless distance from the itR node to centroid
of the kth cell
and
. .2 N
.pij = (¥ 2&n r)ij
- .2
Pip = (F 40 D)y
Define coefficients
a,, = J’ (4n E,)d8 |
ij . ij
J N
1;..=—f n E,. d§
ij . ij
J
g, . = f*!. ds
7ij ij
| J ) 4 (44)
., = - f 5., d8
1 .1
J i J
eij = JO Q) py ) ds
J
E.o= - J‘ﬁza. a3
1] i 1]
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Equations (42) can now be written as

(45)

with

i=1,2,...n; j=1,2,...n; k=1,2,...m
which we will call boundary equations. For the segments on the loaded
boundary, where stress function é is not a constant, the summation
éijqﬁ is replaced by direct integration.
The coefficients given by equation (44) can be evaluated by Simp-
son's rule for i # j, and analytically for i = j. For the boundary
segments which can be represented by straight lines the analytical sol-
ution is possible. The evaluation of the coefficients (44) is given

in Appendix C.

Equation (45) expressed in matrix form becomes

-~
r" o
— e N _ @A) ]
. ~ ~ - mx1
3y, - 6;,m1tby 1 | 13, [an 2,1 (0] o1 | | ”
nxn nxn / nx1 > _ nxm nxn nxn { [CPj] ?
- ~ < o - P nxl
(1 &) |13 oy (&g, = 8y4mlE ) | 7
nxn nxn.J nxld nxm nxn nxn [¢g]
- T oL mx B
(46)
The problem reduced to the solution of the following matrix system
[BHR} = {R) (47

where [B) is 2nx2n matrix and {X} and {R} are 2nxl column matrices.
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.
v

Matri# [ﬁ] is dependent oniy on geometry, i.e., number of nodgs
and their distribution on the boundary. Since matrix '{ﬁ} contains
no;—linear function é(é,ﬁ), which depends on'fhe stress field and
therefore on matrix {i}, we choose to use an iterative process to ob-
tain the solution.

In this dissertation the method of successive elastic solutions
[51,52,53] is utilized. Application of this method will be discussed

in Chapter 5.

" To calculate stresses from the stress function (40) we need not
perform any numerical differentiation of the stress function. We can
differentiate under the integral sign in this equation and then obtain
stresses by the same type of numerical integration as in equatibns (45),
once & and @ are known on the boundary.

Using notations of equation (44), equation (40) can be written in
the following form

8np, = By, (BA), + & .0, +d. 0 (48)

with

i 1, 2, 3,... m

ft
o
N
w
=]
=
]
e
N
w
=]
P
]

where indexes 1 and k refer to the centroids of ith and kth cells

and j- to jth boundary segment as shown in Fig. 5.

Applying equations (17) to equation (48) yields the stress equa-

tions




‘\
=2 2 23 - w2 -
815 (%,5); = (& - 0% + (3 - M) + —=2 s+ 1> (BA),
(i“g) +(S"’ﬁ) lk
+A 9. +B,.9, +C,.9, +D,.0
1373 ii’] ij ] ij 3
N 2 - B)?
85, (x,¥)y = tnf(x - )"+ (y - n)7] + = >+ 1 (g8)
o x-D°+ @G- ik
~ ~ ~ ~ 1 -~ ~ ~ ~y
- A -B..p, +E, & +F, 3
ij73 i373 ij73 ij 3 X
. . 2(% - E)(¥ - 7 L~
- 87rcxy(x,y)i = (x~ 25)()' n) 5 (8A),
(x=-8" + @ -m_1;,
+ G, +H .0 +1,.0, +K,.0
i373 i3] i3 ij ]
for i # k
i=1,2...m j=1,2...n k=1,2 m p
(49)

The case of i = k will be discussed in Chapter 5.

The cocefficients A.., ﬁ.., &.., 5.., E,., F,., G,.,, H,., I,.,, and
ij ij ij ij ij ij ij ij ij

Kij are obtained by appropriate differentiation under the integral

sign of the coefficients given by equation (44)

Therefore, we have
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(50)
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For segments on the loaded boundary the summafions Aij&j and é&j@j
are replaced by direct integration.

The evaluation of the coefficients (50) is given in Appendix C.

As stated previously the problem solution is obtained by solving
a set of_ 2n simultaneous linear equations, where n 1is equal to the
number of nodal points prescribed along the boundary, utilizing method
of successive éi;stic solutionél The number of nodal points is lim-
ited only by the computer storag; capacity. The numerical calcﬁlaf

]

tions were performed on IBM 7094 digital compﬁfer using single preci-
sioﬁ arithmetic. Matrix system given by equation (47) was solved using
the modified Gauss elimination method, which utilizes pivoting and
backward and forward substitutions.

Because of the complexity of the problem, the elastostatic case
will be solved first. The results will be compared with known solu-

tions and used as a guidance in the numerical treatment of the elasto-

plastic case.
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Chapter 4
Solution of the Elastostatic Problem

4.1 Method of Solution

The plane strain or generalized plane stress elastostatic prob-
lems are defined in the terms of the Airy stress function O(X,¥)

satisfying the homogeneous biharmonic equation
Vo=20 (51)

subject to boundary conditions (28), with-stresses defirned by equa-
tion (17) and stress-strain relations by equations (3) or (4), with
the plastic components of the strains set to zero.
The integral'equa;ion method, outlined in Chapter 3 is utilized
in the solution of the elastostatic problem. Since the plastic strains
are equal to zero throughout the plate, we set g(x,y) = 0 in the bound-

ary equations (45), thus obtaining the system of 2n simultaneous mod-

ified boundary equations

md, = a,.6, +b, 0
i ij ] ij 3
4rp, =&, .0, +d..0 +&,. 9 + .9

(52)

N\

o

]

=

N

(O8]

3
(-



subieé},to boundary conditions (28). Once the values of 5j and 53

are fo...i for the boundary nodal points, the stress field can be calcu-

lated frow woevassed stress equations

po—

~ ~ >~ ~ 1 > ~ nd zt

815 (%,5). = A,.®. +B,.0' + C,.8, +D,. 0

xFoT)g = Ayg@y ¥ Byt Cyy05 D40y

. ~ -~ g ~ ~ < nd ol |

5 (%,5). = -A,.p, - B. @ +E, .0, +F, .5

y &9y 1395 7 Cigvy " Ci3i C Tiid
e e (53)

815 (%,§). = G,.¢, + 0,0 +1,.5, +R&,. 0

xy( 228 1J(pJ ij73 . Tii3 ij 3

i - refers to any point in the stress field

§=1,2, 3,...n _

The ccefficient appearing in equations (52) and (53) are given in
Appendix C.

4.2 Numerical Procedures

The number of nodal points prescribed for the boundary is theoret-
ically unlimited. However, computer storage capacity and difficulty
associated with inversion of large matrices limited the size of‘the co-
efficient matrix [ﬁ] of equation (47) to 140x140.

Because of geometric and loading symmetry about x axis it is
possible to reduce the number of unknowns. For 2n total number of
nodal points the number of equations and unknowns, ¢i and ®£, is re-
duced from 4n to 2n. Additional reduction in the number of un-
knowns is accomplished by taking into consideration St. Venant's ef-
fect at the loaded boundaries. To establish the St. Vénant effect,
rhe length of the plate must be sufficiently large and is given by

Gross [21) to be L = 1.2. By definition
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and
VZ@J =0 + Uy
3 J
Since, near the loaded boundaries BC and B'C', O,. can be assumed
J
to be essentially zero, then it follows
b, = oy
J i
and | Boy , ‘ (54)
! = —L =0
3 3y

. The arrangement of boundary subdivisions and nodal points is
shown in Fig. 6. ©Note that the corner points are always designated as
interval points, never as nodal points, thus eliminating discontinuous
functions from the numerical analysis.

Since the vicinity of the crack tip is of greatest interest a
fine nodal spacing along the notch was .chosen. To minimize the effect
of the non-uniform spacing at the boundary points A and A' and to
obtain fine resolution at the crack tip, 60 uniformly decreasing in
length intervals were taken along the notch. The rate of change in
the interval length was optimized for each case by examination of the
results and comparison with available solutions. The resulting stress
field in the vicinity of the tip of the notch proved to be very sensi-
tive to the length of the boundary segments along the notch. The rate
of change in the interval length varied from case to case between 8%
to 107%, the smallest iﬁterval at the tip of the notch § = 0.00015.

Each of the boundaries>‘AB, A'B', DC, and DC' was divided into

5 intervals of equal length. Boundaries BC and B'C' with 15°



. uniformly spaced nodal points and assigned to them values of ¢j and
¢3 from equation (54) complete the boundary nodal arrangement.

The above nodal arrangement was used for all the elastostatic and
elastc-plastic cases considered in this dissertation. The original set
of 340 simultaneous equations was reduced to the set of 140 equations
containing 140 unknown, i.e., Qi. and @i, i=1, 2, 3...70.

4.3 Stress Intensity Factor and Rice's J-Integral

It is recognized in linear fracture mechanics that a stress in-
tensity factor is a scaling factor for the stress field in the vicin-
ity of the crack tip where fracture takes place. Following Paris and
Sih [17] three distinct singular fields are defined based on resulting
crack opening displacements. The first mode (mode I) defines an open-
ing mode where the crack surfaces are displaced normal to the crack
plane. The second mode (mode II) is described by displacements in
which crack surfaces slide over one another perpendicular to the lead-
ing edge of the crack. The third mode (mode III) defines anti-plane
sliding where the crack surfaces slide with respect to one another
parallel to the leading edge of the crack (Fig. 7). The stress inten-
sity factors associated with the three displacement modes, are designa-

ted as KI, K 1° and X

I I* respectively. For the case of pure bend-

I1

ing only mode I displacement and stress intensity factor KI are

cbtained.
Stress intensity factor KI under mode I notch displacement is

defined [21, 24], in terms of coordinate system shown in Fig. 1, as

follows
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KI = 1im/27 r'o (r,8) (55)
0 y 6=0

From the known stress field in the vicinity of the tip o{ the notch
the order of singularity n in equation (55) can be determined by
plotting 4&n oy versus &n r, and least squares fit of a straight
line thru the plotted points.

Once the order of singularity is found, a plot of relation (55)
as r>0 yields the stress intensity factor KI'

By considering the behavior of elastic body containing a crack
Rice {39] developed a relationship associated with the change in en-
ergy of the body due to growth of the crack. This relationsbip is

expressed in terms of the path independent integral, which is given

the symbol J. The integral J is defined as

ou,
J = f (W(e)dy - T, T}} ds) (56)
r

Here T 1is a curve surrounding the notch tip (Fig. 8(a)). The inte-
gral is evaluated in a counterclockwise sense, starting from the notch

surface. Strain energy density is defined as

mn

W(e_ ) = 05448 4 (57)

the traction vector as

T, = 0,.n, ‘ (58)

=% (u, . +u, .). (59)
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By considering the éingular terms associated with the stress en-
vironment near the crack tip in linearly elastic body and evaluating .
equation (56) Rice obtained the following relations

1 - 2 2
J = __TEE_ KI (for plane strain)

(60)
1.2
J = E-KI ' (for plane stress)
Equations (60) allow to evaluate the stress intensity factors without
detailed knowledge of the stress field very near the crack tip.
Choosing a rectangular path (Fig. 8(b)), and taking advantage of
geometric and loading symmetry about x axis the contour integral J

may be written as

2 Buy -T
J=2 t?(e) - o = cxyjsé]dy
l .
3 Buy $
+2 (oxyex +o 5T )dx (61)
2
4 Bu—‘
+ 2/ W(e) - oxex ny_zax y
3 J
where
€
mn
W(e) = f (0 de+ 20xydexy + cydey) (62)
0

The limits of integration in equation (61) refer to the coordinates of

the points indicated in Fig. ‘8(b).



4.4 Results and Discussion

In order to establish the Qalidity of the potential method in the
solution of the case of a single edge notched plate subjected to pure
bending, various geometrical configurations were considered, and the
results compared with solutions obtained by other investigators using
different analytical methods.

The computations were performed for cases of 3, 10, 30, and 60 de-
grees notch angles and varying notch depths. TFigures 9 through 11
show x-directional and y-directional stress distribution as a function
of distance from the tip of the notch. The results are compared with
stress values obtained by the boundary collocation technique reported
by Gross [21] and are founa to be in excellent agreement. Tables 1
through 5 contain selected results of these stress computations.

As expected, the stresses .approach infinity near the tip of the
notch. The square root signularity associated with the crack changes
from 0.500 to approximately 0.488 for a 60 degree notch angle as shown
in Table 6. The order of singularity computed herein is compared with
results given by Gross and Mendelson [22] and excellent agreement is
obtained.

Table 7 shows the dimensionless stress intensity factér RI for
various notch angles, obtained by plotting .of the relation (55), as
compared to the analytical solution obﬁained by Gross and Mendelson

[22]. Analytical results give values higher by approximately 1 percent.

aroca s ST IR TS e e A

v e



Table 8 gives the dimensionless elastic plane stress displacements
at the edge of the notch for various cases considered herein. The dis-
placements were obtained by numerical integration of relation (59)
along straight line paths. The comparisog is made with available re-
sults by Gross [21] and are found to be in very good agreement.

Finally, the relationship between path independent Rice's integral

J and the stress intensity factor K_ given by equation (60) was

I
checked. For plane stress case, the comparison between J values ob-
tained by numerical integration of relation (61) and by use of the sec-
ond equation (60) is shown in Table 9,

The results obtained for various elastic cases compare very well

with existing solutions, thus building up the confidence to applica-

bility of the potential method to the elasto-plastic case.
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Chapter 5
Solution of the Elasto-Plastic Problem

5.1 Method of Solution

The plane elasto-plastic problem is defined in terms of the Airy
stress function &(Q,;) by the non-homogeneous biharmonic equation
(25)
| o = 86D
subject to boundary conditions (28). The stress strain relations are
given by equations (3) for plane strain case and by equations (4) for
plane stress case, function é(i,;) by equations (26) or (27) and plas-
ticity relations by modified Prandtl-Reuss equations (15).

As shown in Section 3.3 the elasto-plastic problem could be re-
duced to the solution of the system of.2n simultaneous boundary equa-
tions (45), containing a non-zero function g(x,y). This function is
dependent on the stress field, which is defined by the stress equa-
tions (49). The stress equations (49) are signular for i =k, i.e.,

~

when x; = ék and §i = ﬁk and plastic flow occurres. For the case

of a rectangular grid the coefficients of (éA)i=k in these equations

can be evaluated by direct integration, yielding the following rela-

tions:



3}?; + 8%\ 23 8
815 _(%,9); =< [an \Z7—F/ +
LI x y —_ i=k

. . ' ~ 2
+ ln[kx - 5)2 + (y - ﬂ)é] + — ZEyz nz 5t 1
(x-8)"+(y-mn)

y i=k

2G - B2
G-H2+G-m?

~ = ~  ~. 2]
2n[(x D%+ G - n)2_J +

L Si + 5;) 2<§X . E-‘L .
81rcy(x,y)i = Qp 3 + 3 tan s - 1|(gA)

i
-]
B

|
==}
S

2(x = £) (37 - 1) -
G-+ G-,

—8woxy(x,y) 4=

i1i=1,2,3-+m; j=1,2,3""'n; k=1,2,3*'m

e

where Sx and Gy represent, respectively, x-directional and

y-directional dimension of the cell.

-

(88)
ik
i#k

(63)
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The solution to this boundary_valﬁe problem is obtained by an
i;erative process, known as the method of successive elastic solutions
[51,52]. This method, applied to the present problem;proceeds as fol-
lows. The loading path is divided into a number of sufficiently small
increments, Aii. The é function in the inhomogeneous equation (25)
is thought of as a sum of Aéi functions, each corresponding to its

load increment, A&i. Each Aéi is defined in terms of derivatives of

P
y

turn depend, through equivalent plastic strain increment Agp,lon the

the current plastic strain increments, Agi, Ae and Agiy, which in

equivalent stress ¢ assoclated with the previous load. The cur-

e,i~1
rent plastic strain increments change iteratively as changing Aéi
affects the stress field.

The iterative procedure for determining plastic strain increments
for each load increment is as follows:

(1) Select a value of load, ii.

(2) Guess initial values of plastic strain increments. For the
first load increment, assume all values to be equal to zero. Other-
wise, use the converged values from the previous load increment.

(3) Calculate éi =

(4) Calculate 51 and 5; from boundary equations (45).

(5) Calculate the stresses from stress equations_(63).

(6) Calculate the modified total strains from equation (13) and
evaluate the equivalent modified total strain Eet from equation (14).

(7) Find the equivalent plastic strain increment Agp from equa-

tion (16), which, in dimensionless form, is
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~ 2 ~

- € -7 A+ wo_ . :

AL = et 23 e,i-1 (64)
Poa+sa+w

1 -m

-~

where O 4-1 is the dimensionless value of the equivalent stress at
,i-
the end of the previous increment of loading. For the first load in-
crement and also for the case where there was no plastic flow under

previous loading, o is equal to the dimensionless yield stress

e,i-1

00’ i.e., unity.

(8) Calculate new set of plastic strain increments from equa-
tions (15), and new Aéi from equations (26) or (27).

(9) Repeat steps 3 to 8 until the plastic strain increments
converge.

(10) Sum the plastic strain increments and return to step 1.

It should be noted at this point that the above procedure can be

applied only where there is no unloading. Once the successive approxi-

mation procedure has converged, the stresses and strains can be ob-
tained at any desired point in the interior of the plate.

The iterative process is illustrated by the flow diagram of
Fig. 12.

5.2 Numerical Procedures

The choice of the size of the grid, which has to cover the plate
in the area, where plastic flow is expected to occur, is of utmost
importance. A too coarse grid will not detect changes in the values
of plastic~strain for small loading increments. A too fine mesh éize

may result in distorted values of second order derivatives of plastic
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strains, which appear in fhe function g(x,y). The 1oading increment
and the grid size are related to each other. A bad choice of either
of them could result in the divergence of the iterative process. To
allow the maximum of grid points to be within the expected plastic
zone, a variable grid spacing was chosen. The grid used for plane
strain conditions was finer, in general, than the one used for plane
stress case. The arrangement of boundary subdivisions, similar to the
one used in the solution of the elastostatic problem, and a typical
interior grid are shown in Fig., 13.

The interior area of the plate, where plastic flow is expected,
was divided into ¥ x s rectangular cells. Due to symmetry about the
X axis, the number of unknown functions é, appearing in the boundary

equations (45) and stress equations (63), was reduced from r x s to

s + 1
2

the sum of the effect of left-hand and right-hand sides of the plastic

m=r X » where now the coefficients of these functions represent
field. Because of computation time limitations, the grid was arranged
in 27x23 cell pattern, resulting in the number of unknowns (g) to be
equal to 324. By increasing the number of unknowns to 400, the com-
putation time for one iteration almost doubled. The smallest cells,

located in the vicinity of the tip of the notch, have dimensions

8

% 0.004, Sy = 0.008 for plane strain cases, and Sx = 0.004,

O
{

y = 0.016 for plane stress case.

Cells with centroids outside the plate above the tip of the notch

were discarded and corresponding values of g were set to equal zero.
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-w2rfnra.me can proceed with the numerical solution, it is necessary
to“rep;oc;;t tﬂe‘function of plastic strains, g(x,y), given by partial
dif%eregéigi.eduaﬁions (26) or (27), by corresponding finite-difference
equations.

.. The Finire difference net for grid station (r,s) is shown in
Fig. 14. TFor a given function f = f(x,y), by use of central differ-

enies, we _an obtain the following expressions for derivatives of this

funétion o
—
fx - Br—l,s(fr-l,s N fr,s) + Br+l,s(fr+l,s - fr,s)
fy = Br,s—l(fr,s—l - fr,s) + Br,s+l(fr,s+1 - fr,s)
"fxx = ar-l;b(fr-l,s - fr,s) + oLr+1,s(fr+lb,s - fr,s)
ivyf““”rggﬁlkrr’s-l - fr,s) + olr,s+l(fr,s+l - fr,s) >
fxy = Yr—l,s—lfr—l,s—l + Yr—l,sfr—l,s + Yr—l,s+1fr—l,s+l
+ Yr,s—lfr,s—l + Yr,sfr,s + Yr,s+lfr,s+l + Yr+l,s—lfr+l,s—l
Vo, fm,s T Yr+l,s+1 e 41,541 p
(65)
=t .gubc:cipts X,y denote differentiation with respect to variables
X oL oy, is a row index, s 1is a column index and the coefficients

are given by the following relations



”

r,s

Yr,s+l

Yr+1,s T

Yrl,6-1 ¥ Yro1,s41 T Yr#l,5-1 7 Yr+l,s+1

Br—l,sBr,s—l
r—l,sBr,s+l

=8

r,s—18r+l,s
- Br,s+18r+l,s
- Yr—l,s—l - Yr—l,s+l
- Yr-—l,s—l - Yr+l,s—l
T Yr-1,s+1 T Yr+l,s+l

Yr+l,s—1 - Yr+1,s+1

(66)

where A%, AV, AiT, AiB, A?L and A?R are distances as defined in

Fig. 13.

When relations (65) and (66) are used the function g(x,y)
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can be ekpressed by following finite-difference expressions

_\
S (5.5) = —Y 2P L AcP - | , P, ~p>
8(x,y) 1 u2 {}r—l,s (ex + Aéx>r 1.s (ar-l,s + °r+l,s)<sx AEx r.s
- Y s
+ a Gp + AEP) a Gp + Aep)
r+l,s \'x X r+1,s rys-1\'y r,s-1
~ (o, (g ta ) (Ep + A8 ) +a S+1(Ep + A% )
, ; y Vs ; y ¥y, s+
Py Az - P oAz >
-3 i " 0‘r,s-—l(ex + Aex)r,s-l (ar,s—l + Olr,s+1)(cx + Aex r,s
~pP =~ P =
+ a (s + Ae ) +a__ (e + Ae )
r,st+l\ x ] r-1,s r-1,s
- (a a )(EP+AE> + (ép+Aé>
r-l,s r+l,s"\y r,s rtl,s\y Y r41,s
+—2 0y (ép + Aép) +y (Ep + aeP )
1 - p2 r-1,s-1\"xy Xyr-l,s—l r-1,s\ xy xy/ s
]
- = P I %
+ v __ (e + Ae ) + v _ (e + Ae )
r-1,s+1\ "xy Xy r-1,s+1 r,s-1 r,s-1
~p ~p ~P g
+ v (e + Ae ) + v (e + Ag )
T, Xy r,s r,s+l\ xy X r,s+l
Yr+l s—l(éi + bE ) oy +1 (EP + AEx )
, ? J K t1,s-1 trL,s\ xy Y r+l,s
~P ~p
+ v (e + Ae )
r+l,s+1\ xy Xy, 1, +1
—
Plane Strain (67)
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and
—\
- o ~P - _ (gp Y l)
g(x,y) = Q)_-,s—l (E:x + A;x) (ar,s—l ar,s+l) « -
r,s-1
=P - ~p ~
+ a (s + Ae ) + o (e + Af )
r,s+l\ x x r, s+l r-1,s\’y 1,8
P4 acP N N
- + ( + A ) + o (8 + AL )
(Gr—l,s “rt1, ) Ey €y r, r+l,s\y v 41,8
P P -p p
- 20y __ (e + Ae ) + v ( + e )
[; l,s-1 Xy r-1,s-1 r-1,s\ xy S/ }
P eP P ~p
Y, (2, + act) Y (€2, + ac )
r-1,s+1 \'xy Xy, r-1,s+1 rys—-1\"xy 2y o el
P P -P P
+ v (s + Ae ) + v (e + Ae )
r,s Xy r, r,s+1\ xy Lot
P+ AP -p P
+ v (s + Ac ) + v (e AL )
e s P R e A T
-.p ,~p
+ v | (e + Af ) 1
r+l,s+1\ xy Xy r+1,s+;h _
Plane Stre#t (68)

Central difference equations (67) or (68) were used tu wvnluate

g(x,y) only for interior plastic cells, where there was plastic flow

at all eight adjacent cells. For non-interior cells the function was
taken as an average of values of g at neighboring plasti¢ calls.
Other methdds of dealing with é at centroids of ﬁon—inter!nr plastic
cells, suéh as backward differences or extrapolation, led to oscilla-

tion or divergence of the iterative process.
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The convergence criterion is defined as an arbitrary maximum dif<
ference between successive values of one or more iteranté. For the
p]asiic field containing many points at which coﬁvergence is required,
it is reasonable to set the convergence criterion based on an average
value of the change in plastic strain increments. For the problems

considered in this disertation, the convergence criterion was based on

the convergence of plastic strain increments 7é?  and was defined as
.1, -p P
TN el . - be
;o Y,k y,k-1].
74/ ! . .
i=1 . e | (69)

where k — referes to current iteration
n - referes to number of plastic grid points for current
iteration
T - 1s an arbitrary convergence parameter.

The computations were performed on an IBM 7094/7044 DCS digital
computer using a Fortran 1V program with single precision arithmetic.
A brief description and listing of this progrﬁﬂ_if‘giy?n in Appendix D.

The convergence parameter T was set to 0.005 for all cases to
be considered. Decreasing the convergence parameter T to 0.001 re-
sulted in change in plastic strain increment values of approximately
one in the third or fourth significant figure. For higher order accur-
acy, which does not appear to be necessary from a practical point of
view, the computation tiﬁe would be prohibitively long. The fact that

the method of successive elastic solutions converges to the right

answer has been shown by many examples in references [51,57].
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Chapter 6
Results and Discussion
The problems selected for aﬁalysis wére limited to the following
geometries and strain hardening parameters for plane strain and plane
stress conditions.

Plane strain conditions:

Case (a) Notch depth a = 0.5, notch angle a = 100, strain hardening
parameter m = 0.05
(b) Notch depth a = 0.5, notch angle a = 10°, strain hardening
parameter m = 0.10
(c) Notch depth a = 0.3, notch angle a = 30, strain hardening
parameter m = 0.10
(d) Notch depth a = 0.3, notch angle a = 100, strain hardening
parameter m = 0.10

Plane stress conditions:

Case (e) Notch depth a = 0.3, notch angle o lOo,.strain hardening
parameter m = 0.10

The load increment size was found to be dependent on the strain hard-

ening parameter m. For m = 0.05 it was necessary to limit the

load increment size to Aﬁ = 0.05, while for m = 0.10 the load was

incremented by Aq = 0.10. For the plate with notch depth a=0.5

the minimum load required to proddce plastic flow in the most highly
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stressed grid points was found to be q = 0.35, and for a = 0.3 the

inltial lééﬁ“was'Lguud to be i = 0.50. The maximum load considered
Voo 4 fJ“;-; ~ Ll a=0.5 cases, and q = 0.9 for the a = 0.3
cases. In the process of solving the above listed problems, the case
with strain hgrdening parameter m = 0.05 required approximately 50
iterations fof éach increment of load (i.e., A& = 0.05) to produce a
ccuvergesd -~ .-¢ 7~ . For cases where the strain hardening parameter

m = Ovh7 e weirage number of iterations needed for each increment
-of load (i.e., Ai - 0.10) was reduced to 40.

It would b~ only proper at this time to call attention to the
magnitude of the task of carrying out the computations for a single
“case. The curp.olotion time required to perform one iteration regard-
cidsmse L 7 vrenwds o of plastic grid points was approximately 5 minutes.
‘The total computation time for case (a) was approximately 2000 minutes,
and for other cases 1000 minutes each. These times could have been re-
duced by an order of magnitude or more if the program were run on a
faster computer or one with greater available memory and better organ-
ization. Such third generations computers as IBM 360/65 and CDC 6600
.Ars examples,
While tés development of the program and the method of solu-

tion was easier to implement cn the slower computer used (the IBM
7094/7044 DCS), future work could be adapted to run on the above men-
© rauned fasier computers.

Addiciczal computation time could be saved by use of a somewhat

ditferent solution technique, known as the tangent mcdulus method [33],



In this method, an equation similar to equation (25) is derived in'‘:
terms of the rate of change of the stress function. Assuming the
stresses and strains are known at a given time, the increment in
stress function and therefore increments in stresses and strains can
be computed using the stress-strain curve.

The results of computations are presented in Figs. 15 through 70
and Tables 10 through 113.

The growth of plastic zone size with a load is shown in Figs, 15
thrqugh 24, It is seen that the shapes of the elasto-plastic boundar-
ies remain similar to each otﬁér as the load increases. As expected,
plastic flow starts around the tip of the notch and as the load in-
creases appears also at the boundary opposite the notch. Compariscn
of Figs. 16 and 18 shows that the size and shape of the plastic zone
is a function of strain hardening parameter m, the difference being
most noticeable along the x axis. Comparison of Figs. 21 and 22 with
Figs. 23 and 24 shows that for the same loads the size of plastic zones
for plane strain are considerably smaller than those for plane stress.
This has been indicated in the results obtained by Swedlow [35] for ;
cracked plate loaded in uniaxial tension.

The equivalent stress contours in the vicinity of the notch for
maximum applied loads are plotted in Figs. 25 through 29. The curves
are the loci of all points of constant equivalent stress. The curves
corresponding to 6e = 1 indicate the boundary of the plastic zone.
In addition, an elastic yield locus representing the elasto-plastic

boundary based on the elastic soluticn is shown in each case. Since



this is commonly assumed to be the boundary of the plastic zone, we can
see that for plane strain cases this assumption introduces considerable
error. Along the x axis the lengths of plastic zones obtained by
elasto-plastic and elastic solutions vary by the factor of less than
two, which is in a good agreemeﬁt with predictions made by Irwin [30].
For the plane stress case the shape of the plastic boundary for both
methods of solution is almost identical.

Stresses and strains were calculated in all cases for interior
grid point#. Selected results of these calculations are given in
Figs. 30 through 58 and Tables 10 through 111.

In Figs. 30 and 31 x-directional and y-directional stress is
plotted as a function of load and of the distance from the tip of the
notch for two different strain hardening parameters under plain strain
conditions. The increase of strain hardening parameter m from 0.05
to 0.10 caused reduction in these stresses by a very small percentage.

Figures 32 through 45 show the stress distributions along the
x axis for all cases investigated in this study. To check the valid-
ity of the results, the bending moments with respect to the neutral
axis at § = 0 were calculated and compared with the respective load-
ing moments. For the specimen with a notch depth a = 0.5 the varia-
tion between computed moment and loading moment was less than 1%; for
the specimen with a = 0.3 the error was approximately 5%.

For selected cases the sum of forces acting in the y-direction
along the x axis was calculated. The results show very good agreement

with the theoretical value of zero.
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The order of the stress singularity n was determined for-each
- case. ' The results are>éiv;n in Tables 112 and 113. 1In case of plane
strain conditions, :h.ia;;eas singularity decreases slowly as loading
incréases. In the case of the plane stress condition we have a sudden
drop in n from its =3lgstic value as plastic flow appears. Subse-
quently n slowly .ncreases approaching a limit as the load increases.
Tables 10 throug! "o contain selected stress data.
The behavior v.  .hc' oouial strain components in the vicinity of the

notch is shown in Figs. 46 through 51 for a case of a = 0.5, o = 100,

m 0.05 and plane strzain condition. The strains were plotted along

X = constant and y = constant lines for load ¢ = 0.7. It is worth
noting the magnitudes ur strain gradients present throughout the plas-
tic zone. These higlh .:adients account for difficulty in obtaining
dependable values for function of plastic strain increments, g (egs.
(26) or (27)). 1In Figs. 52 through 55, the dimensionless x-
directional and y-directional total strains are plotted along the x
axis for all plane strain cases. Figures 56 through 58 show the dis-
tribution of dimensionless total strain components Ex’ éy’ Ez along
the x axis for a case .f a = 0.3, a = 100, m = 0.10 and plane stress
condition. As expectgﬁ; in all cases, the strains approach infinity
near the tip of the notch.

The product of y-directional stress and total strain was calcu-

lated for various cases. The order of singularity of that product

was determined by ploiiing Zn(&yéy) versus n r and by making a
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least squares fit of a straight 1ine through the plotted points., £t
was found to be very close to dnity for all cases considered.
Dimensionless total plastic strains are iisted in Tables 67
through 111 for all cases considered for selected loads. The coor-
dinates (x,y) correspond to centroids of cells where plastic flow
occurred. |
In the case of an elasto-plastic problem the stress intensity

factor, as defined by equation (55), must be generalized to the form

* n(C’max)
K:(o__ ) = lim V27 r o (r,e)‘ (70)
1" max -0 y
8=0
or in terms of dimensionless quantities
4@ = lim V27 En(Q)Sy(i,e) 1)

-0 6=0

For linear elastic behavior R; is identical with RI'

The generalized stress intensity factor is obtained by plotting
the relation (71). The results are shown in Figs. 59 through 61. Fig—
ure 59 shows the effect of strain hardening'parameter m on the dim-
ensionless generalized stress intensity factor for the case of a spec-
imen with notch depth of a = 0.5 and o = 100, under plane strain
condition. The stress intensity factor shows no significant increase
over the linear elastic value up to an applied load of i = 0.40.

Above this load i; increases progressively for both m's, at the

Afaster rate for lower strain hardening parameter. Similar behavior of
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the stress intensity factor can be observed for the case of a = 0.3,

o

o=3 and m = 0.10 shown in Fig. 60. The effect of plane stress

*

1 is shown in Fig. 61 for a case of

or plane strain conditions on K

a=0.3, a=10°

and m = 0.10., Here the stress intensity factor in-
- creases more rapidly for the plane strain case than for the plane
stress condition.

The dimensionless y-directional notch opening displacements are
plotted in Figs. 62, 64, and 65 for various cases. They were obtained
by numerical integration of relation (59) along straight line paths.
For each case a number of paths were chosen through the plastic region
near the notch, and the resulting displacements were averaged. In
general, the notch opening displacement varies linearly with the load
until the plastic zone is established at the boundary opposite the
notch. Then it increases rapidly, reaching values several times that
which would be calculated from the elastic solution.

In order to verify in part, the numerically computed results, the
notch opening displacements for a épecimen with a 10° edge notch,
notch depth a=0.5 and strain hardening parameter m = 0.05 were
compared with experimental results obtained by Bubsey, R. T. and
Jones, M. [54]. The specimen used in this experiment, madé of
Al 5083-0 with length to width ratio of 4:1, crack length a = 0.5
was subjected to three point bending. The stress-strain curve for
this specimen is shown in Fig. 63. The strain hardening parameter can
be'approximated as m = 0.055. The stress-strain curve was idealized

by assuming yield point at o, = 20000 1b/in.2 as shown in Fig. 63

O .



and the dimensionless notch opening'displacements were calculated from
experimental data. The results are shown in Fig. 62 and are in very
good agreement with numerical results obtained herein. As could be
expected the pure bending of the specimen with a 10° edge notch re-
sults in slightly higher displacements than those obtained for a spec-
-imen with a crack and subjected to three point bending.

Finally, Rice's J integral was evaluated for several cases by
using relations given by equations (61) and (62). As in notch opening
displacement calculations, straight line paths were chosen through the
plastic zone near the tip of the notch. The integral was evaluated
using values of stresses, strains and displacements at cells centroids
for a number of paths. The path-independence of J was not conclu-
sive, since the results varied up to 15% from the averaged value.
Since the results obtained by Hayes [25] for the bodies deforming in
accordance with the Prandtl-Reuss equations indicate path-independence
of J dintegral, it is possible that the results obtained herein do
not indicate that the path independent property is lost but rather
than the field values, particularily strains, are not as accurate as
one may desire.

The average values of the dimensionless 3 integral as a func-
tion of load are plotted in Fig. 66 for a case of a specimen with a
10° edge notch, a = 0.5, m = 0.05 and plain strain condition. At the
start of plastic flow J increases rapidly with load. This is fol-
lowed by almost linear variation with additional load. Similar behav—

ior is indicated in Figs. 67 and 68 for a case of a specimen with a
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10° edge notch, a = 0.3, m = 0.10 and plane strain or plane stress’
conditions.

The relations between Rice's J integral and stress intensity

factor K developed for linear elasticity (60) are obviously not ap-

I
plicable for the elasto-plastic problem. By plotting the j/ﬁiz
fatios as a function of ioad q, the relation between Rice's J inte-
gral and the dimensionless generalized stress intensity factor ﬁ; is
obtained for the above threé cases., The plots are shown in Figs. 69
and 70. 1In all cases, the ratio 3/&;2 remains almost equal to elas-—
tic value of 0.89 for plane strain or 1.0 for plane stress and in-—
creases sharply at the load corresponding to the appearnace of the
plastic zone at the boundary opposite the notch. Once the transition

occurs the ratio increases approximately proportionally to the load

increment.



Chapter 7
Summary and Conclusions

The boundary integral equation method was applied in the solu-
tion of the plane elasto-plastic problems. The use of this method
was illustrated by obtaining stress and strain distributions for a
number of specimens with a single edge notch and subjected to pure
bending. The boundary integral equation method reduced the non-
homogenious biharmonic equation to two coupled Fredholm-type inte-
gral equations. These intégral equations were replaced‘by a system
of simultaneous algebraic equations and solved numerically in con-
junction with a method of successive elastic solutions.

In order to check the validity of this method, several elasto-
static problems were solved. To improve the accuracy of the solution
in the region of interest, i.e., in the vicinity of the notch, nodal
spacing along the notch was taken as uniformaly decreasing in length
toward the tip of the nogch. The results proved to be very sensitive
to the minimum segment length. The comparison of calculated stress
distributions, stress intensity factors and displacements with avail-
able solutions obtained by others showed very good agreement.

This method, applied to elasto-plastic problems, proved to be

capable of giving very detailed results such as stress and strain
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distributions' around the tip of the notch and, related to them, the
- shapes' of plastic zones. A need for such detailed stress and strain
distributions existed for some time in the field of fracture mech-
anics.

The obtained results also provide the information on the effect
of strain hardening and on the differences that occur between plane
:stress and plane strain solutions. The singular nature of stresses
and strains iﬁ the vicinity of the tip of the notch was confirmed.
The order of singularity for the strain energy density was found to be
unity, which is consistent with results previously obtained by other
investigators.

To verify in part the numerically computed results, the notch
opening displacement for one case was checked with the experimental
results obtained for three point bending of an edge cracked specimen.
Allowing for the difference in the notch angle and the loading method,
the results were in good agreement.

The generalized stress intensity factor was introduced and cal-
culated for several cases. Once the plastic zone was established
around the tip of the notch, this parameter increased progressively
over its elastic value. For cases considered it increased more
rapidly for the plane strain condition than for the corresponding
plane stress condition.

Rice's J integral was calculated for several cases. its path

independence property has been qualitatively confirmed and the relation
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between J and the generalized stfess intensity factor was graphi—?
cally extended to the materials deforming according to the Pra;dtl—
Re&ss theory of plasticity. |

The presence of a singularity at the tip of the notech makes ac-
curate answers very difficult to obtain. Some improvement in the solu-
tion techniques and further investigation of the influence of the
boundary nodal spacing and interior grid size on the resulting stress
and strain fields, and therefore, on the notch opening displacemenfs
and - J integrals, may be desirable. As a further check of the valid-~
ity of the results obtained herein, an experimental program to meas-

ure notch opening displacements and to evaluate Rice's J integrals

would be of great value.



Appendix A
Stress Function and Its Derivative Along the
Boundaries ofAV—Notched Plate
The boundary conditions to be satisfied by the stress function

e(x,y) [::] are

s =
2
By Txds + Gl

s > (A1)
3 _ _
ax JP Tyds + C2
—
where
RO TR

are the boundary tractions. The integrations are performed along
boundary.

Equations (A.l) permit to express the boundary value problem

. . . \ . 3
in terms of stress function @(x,y) and its normal derivative 2p(x,y)

Jn
on the boundary.
Since the total differential is given-by
= 39 39
dao X dx + 3y dy
we have by applying the chain rule
39 _239dx , 39 dy
ds  9x ds dy ds
T (A.2)

00 _ 3¢ dx | 39 dy

an ax dn dy dn
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Introducing direction cosines £ and m of the angles the outward
normal n makes with the x and y axis, respectively, we have the

following relations (Fig. 71)

dx dy h
£ = cos(x,n) = In " ds
(A.3)
. d .
m = cos(y,n) = E% = - %g

Substituting relations (A.3) into the first of equations (A.2) and in-

tegrating, we obtain

- Ns
- 99, _ 39
0 7//0 <By % o %>ds + C3 (A.4)

The second equation (A.2) combined with equations (A.3) yields

39 _ 39 29
= % L+ 5y m (A.5)

on
Consider boundary along the notch OA (Fig. 1). For the unloaded bound-
ary, tractions TX = Ty = 0.

Since the stresses depend on the second derivatives of the stress
function @, we can arbitrarily set constaﬁts Cl’ CZ’ and C3 iﬁ equa-
tions (A.1) and (A.4) equal to zero.

Combining equations (A.1), (A.4), and (A.5), we obtain that the
stress function ¢ and its normal derivative %% has to satisfy the

following conditions along boundary OA

® = 0; 3%_ (A.6)

Along the boundary AB; since Tx = Ty = 0, we have

= . -BQ=
9= 0;  22=0 @



Along boundary BC, direction . cosines are £ = 0, m = 1, and the
boundary tractions are

T =0
X

9 (A.8)
“ max (w . )
T g = —— (s -a-x

y v W 2

Substituting these tractions into equations (A.l) we have

o _
Jy Cl

99

26 (A.9)
max (w
% f — <§—a—x)dx+C2

Since the derivatives of stress function at point B on the boundary

must be continuous, we have the following conditions

§9 =0 %g =0 (A.10)
Y1p(-a,L) B(-a,L)
Therefore, it follows from equation (A.9)
9.9 = _a_g_) = O ]
oy ~ 9n
and ? (A.11)
20 2
39 _ _max (w X a
x W’ (2 x-ax -5 > * Opax w VT a{J

Substituting relations from equation (A.11) into equation (A.4), inte-
grate, noting that ds = - dx and at B(-a,L) the stress function

P =0, we obtain

N

o 3 3

= - max (%r-+ ax2 + a2x + %;)
> (A.12)
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Along boundary CD the tractions Tx = Ty = 0. Due to the continuity
of stress function and its derivatives we have
2 -
o w
= = _max
® q)C(w—a,L) 6
> (A.13)
! EQ = .?_(2 = gg =0
o ox 9x
" c(w-a,L)

Using dimensionless relations (24), making all distances dimen-
sionless with respect to the width of the plate w and making use of
geometrical and loading symmetry about x axis, the boundary condi-

tions can be summarized as follows:

, I

along boundary OA and O0A' = 0; %ﬁ =0
tpt 3(5
along boundary AB and A'B' 9= 0; i 0
along boundary BC and B'C' '
| > (A.14)

S~ %3 2 2. & %2 a2

¢ =-4g 7;-+ ax + ax +-§— + 4 (?T + ax +-E—>

B _

ofi

S

It
O\ o
Wl
218

]

(=]

along boundary CD and C'D
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Appendix B
Green's Boundary Formula for Interior Points
‘and Boundary Points

The integrals over boundary C appearing in equations (36) and
(39) are singular at points P(x,y) €C when r(x,y,E,n) = 0.

.In order to perform integration we must exclude singular point
by drawing a small semi-circle of radius € about point P, as shown
in Fig. 72. We now perform the integration-along the new path and let
€ go to zero.

Let contour

Then line integral from equation (36) can be written as
-
lim $ éi-(kn r) - gg-SLn r|ds =
>0 n on ,
C'+Ce

e 2 _ lin o s
Uﬁ o o (4n r)ds 0 dﬂ ® ™ (n r)ds Jp ™ fn r ds >
c' c!

c
€

e>0 on
c | -

€

+ lim JP Kid &n r ds

(B.1)

. . . 3 _ 9
- Evaluating integrals, with 3n C ap Ve have

e N

- e ST



n .
lim 9 _ lim 1 _
>0 f <I>a—n(2,n _r)ds—e_>0 f @eede—mb
C 0
€ (B.2)

lim 30 -~ lim 9% _
0 f ™ ¢n r ds = 0 f o € fn €dd = 0
Ce 0 ~ o

Substitution of relations (B.2) into equation (B.l) yields

lim K _ 9% - 2
0 f -[@ ™ (2n 1) o n {]ds = $ o™ (n r)ds

C'+Ce C-1(P)

- f—g%lnrds—mb for PCC (B.3)

where f means the integral along the boundary C excluding in-
C-1(P)

tegral about singularity.
The line integral from equation (39) will be evaluated in the sim-

ilar way

1i 2 I IR 20 3 ,.2
e;(r)lf Ea—i-(Vp)--a%Vp+<I>-é—%—-5;ads= f@?ﬁ(vp)ds
c'+C, c'

_1im 3 2 _ 39 2 lim 39 2
>0 f ? 5n (VP)ds f am © s o f on | Pds
L

c

c c

€ €

3p _ lim 3p _ Y
+ f ) In ds >0 f o) Y ds f n pds

c' : C c'
€
1im 1) '
T ex0 f o P (8.4)
c
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Since

9 _ 0
p=r2£nr and == = o0
-we have
ﬂj—z-.s—o=r(22nr'*'l) ]
on Pl
2 32 19
v = 22 4 _.ég-= 4(4n r + 1)
Brz r of ?
D =2 =3 gty =4
an (7 ) Eap (TP =3
V4p = 0 =~

(B.5)

Evaluating integrals from equation (B.4) using relations (B.5)

m

lim _1dm 4 -
30 f 2 (oyds = 1p / ¢ ¢ £dd = 419
c 0
e -
n
lim  [° 3¢ g2 . _ lim 99 c(en e + 1)de
e>0 f o U F5 T esp f f or < )
C 0
€
1im o ° ;. - lim ¢e(2%n € + 1)ed6 =0
e>0 on <% e>0
C 0
€
lim U/) 3¢ od - lim d/) 32 ezln €d6 = 0
>0 n >0
c 0
€

and substituting them ico> equation (B.4) yields

2 s _2 ¢ -
f EP—E,%(V o)—gvp+ o ds = f
C|+C€ ) C"I(P)
_ 30 2 3p u»”d
+‘/w[anv,+¢>3n‘ i
C

lim
>0

ds - 4mQ

N

0

for p e

(B.6)

)

° 2 .
? 5 (Vp)ds

(B.7)



In order to derive the corresponding relationship for P CR we intro-
duce a new boundary contour.

The singular point is excluded by drawingva small circle of ra-
dius € about point P and introducing a slit in region R between
points A on contour C and B on contour Ce’ forming a new bound-
ary C + CL + Ce, as shown in Fig. 73. The arrgws on tKe contour
refer to the direction of integration. Since d/‘ = —JP , line in-

o A B
tegral from equation (36) can be written as

lim 5 50 o 3
50 [% 0 (n 1) ~ o n {]ds = dﬁ ¢ n (4n r)ds

C+C c
€

lim 9 ad 1im 9
- 20 f ¢ 5o (4n r)ds - f—gﬁ- fnr ds+€+0 f—a;' 2n r ds
C C C
€ €
(B.8)

Since the limits of integration over contour Ce are 0 and 2w,

equation (B.8) yields

lim 3 29 - 2
€20 d[, [} 33-(2n r) - ™y in g]ds = dﬁ ® o (2n r)ds
C_

C+C
€

- f—i— n r ds - 2md for PC R (B.9)

Line integral from equation (39) yields
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D g2y _ 39 2
’; (Vo) 5o Ve + 0

_ 99 g2 3 _ 3%
+f[:aan+¢an-
C

9%
on

{[ds - 819 for PCR (B.10)
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Appendix C
Evaluation of the Coefficients in the Boundary
and Stress Equations
The coefficients to be evaluated can be expressed in general dim-

ensionless form as

(C541M541)
f(¥)ds
(Ej’ﬁJ)
or
(Ej+l’ﬁj+l)
£(p)ds
(Ej,ﬁJ)
with
—~
r = 1/(5:1 -5+ g, -0
and > (C.1)
6 = t2n ¢
where ii,yi are the coordinates of the point P CC for the boundary

equations (45) and point P CR for the stress equations (49).
For the boundary, which consists of straight lines, the coeffi-

cients can be evaluated analytically. Let us divide the boundary into

straight line intervals. Let X, and ¥ designate the coordinates
i g

i

of the ith npode and let éj and ﬁj designate coordinates of the
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starting point of jth interval, and é,ﬁ répresent variable coorr
dinates in the jth interval.

Also, let lj and mj be direction cosines the outward normal
to the jth segment makes respectively with x and y axes

(Fig. 74 ). Since

Qj = cos(n,X) = cos 8

mj = cos(fi,¥) = - sin 8
we have

d§ = sin 6 di + cos O df
or

d§ = - m.¢E + 2.dA c.2
g mJGE j fi (Cc.2)

Normal derivative, designated by prime superscripts, is given by

24

9 9
— = L, — — .
ofi j a8k j of (c.3

C.l Coefficients of the Boundary Equations

The boundary coefficients, given by equation (44) are
' b
aij d/](ln rij) ds

ij

o
fl
1
=
=]
a1
[y
e
[a 9
me

c..
1]

. o ) (c.4)
dij = - pijds
R

1
[}
™
e -
[ SR
o,
o
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Let us transform expressions given by equation (C.4) by use of equa-

tions (C.1l), (C.2), and (C.3) into the following form

%, - & g, - A . .
a,, = - L. + m,| [- m.d€ + £.dn
ij f f2 3 f2 J[ Jg h| ]
h| ij ij
b, = - gn %, (- m,dE + 2.dn)
13 f lJ( JE Jn)
"3
& = - (1+ 0 F2)[G. -B)8. + (§. - m.][- m.dE + 2,d7]
1 f S A G B 3
h|
d,, = - £2 on £, [- m.dE + 2,dA]
ij i3 ij 3 h|
k|
é,, = 4a,,
ij ij
fij = - 4 U/)(l 4+ &n rij)(— mjd€ + ljdn)
h|
= -4 —m.dE + %.dR) + 4b. .
f( JE Jn) 13
h
For the jth segment we have the following relations (Fig. 74)
fi=b.E+a,
83
where
a =ﬁ.-—b.~.>
h 3 373 -
L,
b, = -l
] o
3 m

-

(C.5)

(C.6)



=”}1 Tuwersely
E=d.fi + c. —T
. & Jn J
where
3 S
c, = -
b.
J j
1 ik}
dJ.:-gT:—z.
J -J_J

‘Since thn +romdary.segments parallel to x axis have mj =+1, 2

(c.7)

. =0
J

relations given by equation (C.6) must be used. For segments parallel

to y axis, where mj =0, &, = 1, .equation (C.7) will apply.

J

For

the boundary along the notch either of these relations could be used.

C.1.1 Boundary se~ments on the notch and segments parallel to x axis

(C.8)

“yen w-Gombining fiist ~f equations (C.5) with equation (C.1l) and equa-
-tion (C.6) and using m§ + Z§ = 1 vyields
£,
) 3+ dE
ij B (?1 - bjil - aj) - ~.2
£ (xi—€)+(yl-a3-b€)
J
Evaluating the integral [56] results in
E 41 izi ) L
-3——2 - % Zgj + == (§, - A)
: m, m, ] J
3 = ‘tan-.1 J J
ij fi .
5, - nj) o &y - Ej)
J
I T
2 "\ %1 + 2 gj + m (yl - nj)
S ™ J
— tan

for i # j;
for 1 =3 limiting process gives a;; = 0
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In a similar way we evaluate the rest of coefficients given by equa-

tion (C.5)

?

~ 1 . 3+l - 2.2 - - S 24,3
b]Lj = —2-% 5 Jln[(xi -8+ 3y - ay - bjé) 1dg
Ej ,
1 L/’E;J'*Ll " o
= E / 'ln[(xi - &) + 1(3(i - & - bjE)]d€
5
& 41 i L
+ [ .Qn[(xi - £) - 1(yi - aj - jE)]dE
Ej :
or -
: et : 2
by Tty m, Gy = ) - By - Eyyy) 2“':(" &541)
k|
7 MY - . .2
+ Gy “j+;) :l - m; (yi - nj) - (xi - &J.) ln[(xi - Ej) ,
27 | fi .
+ (F, - 7 +m | (F, - 0,)+ X, - £,
CAEERL EEACAPE Gy 5@
B 3 22 2
. ) Ly . i
.._J_él_ xi+—="2—g:,l +I{fl(yi"”j) 4
-1 M m, ]
tan J 8! 7
. _ s P
5, nj) + (%, Ej)
B 3
4 [ 4 ) A
‘mz- xi+;2-£j e (yi—nj)
- tan 7
s o N PP
3, nj)_ pal C T
.3 | ]
h AE, = E,, . - E, :
| where EJ €J+l EJ (C.9)



For the next coefficient, we have

. e .
= ' J - A - 3t 2 =
cij, ] (yi aj bjxi)(l + n rij)dE
EJ
or
- t541 , .
ci. = (§; - & - b,X,)AE §, - &, - b.% £ .d
i3 (Yl 3 b.Xi)Aﬁj + (yi 4, bei) ) 2n oy g
3

A
i3 = '-2-}-.;- 5 n rijdg
55
therefore
¢..= (9§, - &, - b.®)AE. + 2m,(§, - 4, - b,%,)b_ .
ij (yl % Jxl) EJ mJ(yl J ] 1) ij

or after some algebraic manipulations

Integrating equation (C.11) by parts yields

(C.10)

(C.11)
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! 23 a2 ny S 22 +~)
djy = -6-1537 <A£j+l 3BES,p + 3CE D) zn(A; " 2B
~3 ~~2 ~ o~ -~ ~
- (Ag - 3BES + 3CE, - )!Ln(AE - 2BEy+ c)
3 A 3
A -3 ~~9 24T - B2 -
2(3 bi41 " BS YT g3+1)
. .12
+2(éé3_ﬁéz+2Ac-Bzé) 7 (€.12)
373 3 A J
<. 2. .3 AEZ - 2BE, .+ C
_ 3ABC - A'D - 2B” i+l 3+1
2 ~2 ~ - ~
A AE] - 2BE, + C
gj g:|
3/2 _, AE, . - B 4 AE, - B
+ J%-(Aé - ﬁz) tan R .2 - tan S
A VAC - B2 VAC - B2
-
where
A=14+bl =5 ]
m,
3
B=% +b,(§, - &)
S (C.13)
- L2 N L\ 2
C = X + (yi - aj)
=23 01 . < \3
D= x5 + b (yl aj)
J _/
Finally the coefficient .
Y A I
L= — dE + 4b, .
ij m, ij
1 Ug
3
or
i AE,
fij = 4 (—J-mj + Dy (C.14)
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On the loaded boundaries BC and B'C' (Fig. 1) the stress
function @ is given in dimensionless form by equation (28) and it

can be written in terms of £ and n as

s A mer oy 2
o = -3+ W= 2o -+ g -m (c19)

Since the assumption that the stress function @ on these boundaries

is piecewise constant may lead to errors, the summation éijéj in the

boundary equation (45) is replaced for the boundary BC by the

integral
B

S T L
9y 35 (Vpy,)d8 (c.16)
C

which can be evaluated in closed form. For this boundary Zj = 0 and

therefore
. ¥y, - 1
g% (V251j> = - bm, — 2
(% -8 "+ F, - M
Since n = ﬁj = L for all segments on BC and d§ = - mjdé, the in-
tegral given by equation (C.16) becomes
~3 )
~ 2 .. . ndE
i, = 4ol (3, - ) . qui 5 (€.17)
(CB) 1-a & -8+ Gy - nj)

which can be evaluated to give
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.

~ 2§ . . - .
Ii(ca) = —5‘1 3, - nJ.)J.g 4z, - 2(} - 23)
S 2
— ) -2 4 (ii + 5)2 + (91 - ﬁj)
+I(9i-ﬁ,) - 3x] + 3Q1 - 28)%, + 33(1 - &)} in ——— R
L J —E (xi+a—l) +(yi—nj)

,2;{1[ - 3(5, -7, )_]+3(1 28) {2 _(yl_ﬁj)z_]+6a(1-a)ii+az(3-za)

+
|95 - Al
v %, 43 -1 a K rE s .
i -1 —4——— - tan > (C.18)
R S PR RN
_ i 3 i i
fb
For the segments located on boundary B'C' n = ﬁj = - L. Revers-
ing limits of integration in equation (C.17) yields
. ) |
I, =-S5, - 8 4% - 200 - 23)
(8'C") T
“—
- 2 . . 2
— 9 9 — (xi + 3" + (yi -"n,)
+L(§'i—ﬁ.) -3ii+3(1-2a)ii+35(1—"!zn 1
3 = (R, +E-1T+ (. -0)
1 3
95 | 52 2 o« 12| o 4 52 5
~2% i % —3(y -n) +3(1-23) % (5. -18.)"| +6a(L-3)%, +a (3-23)
+ 1 s N i
Iyi-njl
- s T
1 %, +a -1 _1 X, ta | ) B
[;an 174 - tan 1 = ! (C.19)

C.1.2 Boundary segments parallel to y axis

The coefficients for the segments on the boundary sections parallel
to y axis can be evaluated in a similar manner.
Combining equations (C.5) with (C.6) and (C.7), setting mj =0,

Aﬁj = ﬁj+l - N, and performing indicated integrations, we obtain the



following expressions

TN

4 A - F. 4 f. = F

éij = - tanl——sJ{il_—..];-tanl-:J—T;-
iT 8 *1 7 8
for i # 3
for i=j limiting process gives a;; = 0
: ) 2 2
b.. = &A%, + y. - A, V. — T X, - &
i3 3 ﬁJ 5 (¥, ”J+1)9“n[(y1 nj+1) + (% Ej)J
é,. =
1]
d,. =
1]
€,, = 43
i3 1]
Ay,

£, — -5

(C.20)
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C.2 Coefficients of the Stress Equation

The stress coefficients to be evaluated, given by equation (50),

22 L2
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(Eq. (C.21) continued on next page)
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. 5 (%, - 8)(F; - 1) N
Liy=2 [ % =2 7( 9%
P (%, -8 +@G; -M
. (%, - DG -
Ki' = -2 3 5 ds
) (%, - D)7+ (3, - A)
J t (c.21)
C.2.1 Boundary segments on the notch and segments parallel to x axis
Let
\
~ 2 . L 2
d = xi + (yi - aj)
b = -z[xi + bj(yi - aj)]
c=1+ b§'=-J3
m,.
3 e (C.22)
~ iy . 5 2
h = X, - (yi - aj)
é = -2[%x, - b, (¥, - &,
| 394 J)]
f=1-b
)

Combining equations (C.2),

(C.3), (C.6), and (C.22) with expressions

given by equation (C.21) yields
£

. j+1 ~
ij = m_8-[i12'J - (91 - aj)mj] f < ~~d§ 292

K| £ (d + bg + c£9)

j
164, €j+l - o
- —1 £dg
. = L oy . 2.2
" ; (d + bE + c&?2)
j
- (Eq. (C.23) continued on next page)
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(Eq. (C.23) continued on next page)
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., T a
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(Eq. (C.23) continued on next page)
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- (Eq. (C.23) continued on next page)
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To calculate the coefficients given by equations (C.23) the fol-

lowing integrals are required

: =f dE _ 2 can~)l 2cE+ B
1 L o2 >
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+b£+c£ cV4de —_52 'Vlfc'ic—gz
EdE E b < s bz-” ! 2cE+ b
=2 - — SLn(d+b£+c€ ) t———————

0

o

b e
3
3

i 1 2cE + b be an~L _2cE +b b
£2 de -2 \d +bE 27 2
b - ~ ~
(d+ £+c€) ©4de -b +bg +ck ’\/Adc-b Nude 52
i EdE _ 1 bE + 24
3 +bE +cE2)2 4dc - b2 \d + DE + cE2

an—l 2ct + b

+ ———t
\ Vl;:lc - BZ \’ 4:1(: - 1;2

i =f £2a 1 | e?% - 230 +bd

(@ + BE + c£2)%  4dc - B2 | o(@ + BE + D)

4d -1 2¢cE + b

\}4dc -p2 ‘\/4dc - b2

(Eq. (C.24 continued on next page)
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(Eq. (C.24 continued on next page)
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Combining equations (C.23) and (C.24) we obtain
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(Eq. (C.25) continued on next page)
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(Eq. (C.25) continued on next page)



(C.25)

For the boundaries BC and B'C' the summations Aijéj ‘and éijig

in the stress equations (49) have to be replaced by direct integration.

For the segments on the boundary BC summation Aijéj is re-

placed by

and summation .éijw' by

2 2
9 ~ 2 2~ - . o ~
3557 / P53 (VP12 = 5555 Ticen

(C.26)

(C.27)

where the stress function ¢ is given by equation (C.15), and integral

Ii(CB) by equation (C.18).
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Differentiating Ii(CB) twice with respect to ¥ under the inte-

tegral sign, and using relations (C.24) yields

e

-3 .
e = =24(y., - 7,
1-3 l:(ii -8 + (Sri - ﬁj)]

¥

+ 32(y l/] : PdE
| 1-3 - 0%+ @, -2 ’
Yi nj

=C-43(5 - 1) [:-217 +3(1 - 28)I + 631 - B)I

2 .- 169 ,. ~ 3 > N
+ 3" (3 2a)I[;[ + 5 (¥. nj) [—2112 + 3(1 - 23

£=—a
+ 6a(1 - )i 2 - 2a)18]}

(C.28)

The expression (C.27) replaces the summation éijiﬁ’ on boundary BC.

~
~

Differentiating Ii(CB) with respect to % and ¥ wunder the inte-

gral sign and applying relations (C.24) we obtain
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1, .. = -8 Uf
i,xy(CB) La

§(x, - £)dE

. 2
[(ici -0%+ @, - ﬁj)Z:]

-1 -
RN 1
+32(3; - Ay /) 3
[(i - 9%+ G, - ﬁj)ﬂ

(Eq. (C.29) continued on next page)
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: {'2113 + 1301 - 28) + 2%,11, + [63Q1 - &)

301 - 28)% )T, + (32(3 - 2a) - 6a(l - LRI

a (3-25)?114} f A(yi - ﬁj)z {}ilé - [3(1 - 23)

- 1 N . .. A 2 -
+ 2xi]I12 - [63(2 - &) - 3(1 - 2a)xi]IlO - [a (3 - 23)
£=-3
- 6a(1 - é)i;]ig + 3%(3 - Zé)iifé} ~ (C.29)
|&=1-a

The necessary

ing limits of

integrals for B'C' boundary are obtained by interchang-

integration in equations (C.28) and (C.29).

C.2.2 Boundary segments parallel to y axis

The coefficients for the segments on the boundary sections parallel

to y-axis can

be evaluated by integration of expressions given by equa-

tions (C.21) using relations given by equations (C.2), (C.3), (C.6), and

(C.7) with m, = 0, &, = +1.
J J

13

We obtain

1 Vi

fi

j

= ~8(%; ~£,)<

(Eq. (C.30) continued on next'page)
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(Eq. (C.30) continued on next page)
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Appendix D

A listing of the digital computer program developed to perform
ﬁumerical calculations for the problems considered in this disserta-
tion is presented in this Appendix. The program uses Fortran IV al-
gebraic type language and was.used on an IBM 7094‘digita1 computer.

The program consists of the main program designated as PNOTCH
and 18 subroutines. The schematic flow diagram of this program is
shown in Fig. 75.

The program makes use of overlay with the PNOTCH executive pfo~
gram in the parent link, and the 18 subroutines in 10 core loads. The
first four core loads are associted with the initialization section,
the remaining six with the load dependent loop. This large number of
core loads was necessary because. of the limitation of available stor-
age. Of the 32,768 words of total storage, only approximately 25,000
are available for the program and its data. The program uses two phy-
sical tapes and three virtual tapes (disc storage) for large tables of
data that are needed repetitively throughout the iterativevprocess.
Single precision floating point arithmetic was found to be sufficient
for and consistent with the mathematical model of the problem.

The program 1s designed to operate on different cases by changing
data cards which specify such things as specimen geometry (notch depth

and angle), strain hardening parameter m, the location of nodal points
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(boundary nodes, interior grid) and the 1oad. This data is read in by
subroutines GRID and ELASTIC (1).

The coefficient matrix [B] for the simultaneous equations (47)

[B]{x} = {R}

is computed in subrbutines VCAL and PARTC and is stored on tape. The
"{R} vector has terms that are load dependent (computed in RHCAL) and
terms that are g dependent (computed in PHICAL using TABLE). The
solution of'these equations is carried out in SOLVE, using modified
Gauss elimination method (Crout process with pivoting).

The stress equations (49) have terms that are load dependent
(i.e., 61 dependent), terms that are dependent on boundary values of
51 and 5;, and terms that are dependent on g, which is a function
of plastic strains. The load dependent part is computed in ELASTC(2).
The coefficients of 51 and 5; are computed in STCCAL and CDCAL and
stored on tape. The 5—dependent part of the stresses is computed in
GCALP. The é—dependent part is computed in GCAL using TABLEC.

The é function, defined at cell centroids, is a combination of
derivatives of plastic strains (eqs. (26) or (27)). The coefficients
needed to cqmpute these derivatives are computed in DRCAL and stored
on tape. The current plastic strain increments are computed in GCALG.
The current increment of the é function (i.e., Aé) is computed in
GDERIV.

Convergence is tested after each iteration of the é—dependent

loop in GCALG, and is noted if it occurs. Because the convergence



97

process for even a single load increment may take hours and be inter-
rupted by random hardware failure, CCALG causes a restart card deck to
be punched every third iteration.

Subroutine TRMNL causes such a deck to be punched whenever there
is insufficient time left to complete another iteration. The same
subroutine lists and punches final results (stresses, strains, etc.)
at all cell centroids whenever convergence has occured. It also sets

up the necessary arrays for the next load increment.
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SIBFTC PNCYCH DECK
C MAIN PRCGRAM FOR SOLUTION OF PLASTIC PROBLEM
COMMON AAL,CONTST,C2,CSM,C1M,CGM,CGB,CGC+CRFP, DAY »DNMM, FMM,
ITERyKLyKMyKLOAD )Ny N2y NP 4N2P ¢ N7y N8 y NMW, NMWP ¢ NXCL s NYCL ¢ NCELL,
AMWH NMAX,PT ,PI4,PIB,PLM,Q,QBG,QLl4R(140)},TIMA,TIMB, TMTGOF,
ISTC o XMINy XMEW
CCMMON FX(ZZO) PHIB(220),L(220)+XB(220),YB(220)
REAL KLOAD
C CFCOSE CRID,READ PRCBLEM PARAMETERS,SET UP G FIELCS ETC.IN EITHER
C INITIAL OR RESTART VODE
PRITE (6,11}
I1 FORMAT (11H INTO GRIC )
CALL GRID
C ELASTC (1) DOES THE FOLLOWING
C REACS IN PROBLEM DATA

Hwn

AN=1
WRITE (6,13)
I3 FORMAT (29H CUT OF GRID +INTO ELASTC(1) )

CALL ELASTC (NN)
C CCFPUTE V MATRIX A,B,.CyD
RRITE (6414)
14 FORMAT (29H CUT OF ELASTC(1) ,INTO VCAL )
CALL VCAL
C CCMPUTES CCEFFICIENT MATRIX V(140,140) AND STORES 1T ON SCRATCH TAPE
RRITE (6,15)
15 FORMAT (26H CUT OF VCAL ,INTO PART C )
CALL PART C
C CCMPUTES GEOMETRY-~DEPENDENT STRESS COEFFICIENTS AJyCJlreecseceeKd
C FCR ALL CELLS
C COMPUTE STCF MATRIX
WRITE (6416)
16 FORMAT (28H CUT OF PART C ,INTO STCCAL )
CAatL STCCAL
C CCMPUTE CCEFFICIENTS FOR DERIVATIVE CALCULATION NEEDED IN GDEREIV
¥YRITE (6417)

17 FORMAT (27H CUT OF STCCAL ,INTO DRCAL )}
CALL DRCAL
AN=2
WRITE (6,18)
18 FORMAT (30H CUT OF DRCAL ,INTO ELASTC(2) )
317 CALL ELASTC (NN)

C ELASTC (2) COMPUTES THE PART OF THE RIGHT HAND SICE THAT IS
C NCT G DEPENDENT
C CCMPUTE PART OF RIGHT HAND SIDE THAT IS LOAD DEPENCENT
YRITE (6419)
19 . FORMAT (30H CUT OF ELAST(2) , INTO RHCAL )
CALL RHCAL
C RESTORE ABC ARRAY



99

CRITE (6,20)
20 FORMAT (25H CUT OF RHKCAL ,INTO RABC )}
CAtL RARC
C CCVPUTE G DEPENDENT PART OF RIGHT HAND SICES
C SCLVE FCR NEW PHI AND PHI PRIME
PRITE (6,21)

21 FORMAT (26H QUT OF RABC ,INTO PHICAL )
3¢ CALL PHICAL
PRITE (6,22)
22 FORMAT (27TH CUT OF PHICAL ,,INTO SOLVE )
CALL SOLVE

CALL TIMELI(TIMB)
IF (TIMB.LT.TIMA) TIMB=TIMB+DAY
TIME=(TIVMB-TIMA)/XMIN
TIML=TMTGOF-TIMB
WRITE (6412) TIME,TIMA,TIML,TMTGOF
12 FORMAT (21H TIME AFTER PHI CALC F8.3,1P3El4.5)
C CALCULATE NEW G (GNEW)
C CCNMPUTE NEW G FIELD BY DOING THE FOLLOWING
C CCMPUTE STRESSES FOR ALL CELLS USING
C NEw CAP PHI
CONTST=0.
$RITE (6,23)
23 FORMAT (26H CUT OF SCLVE ,INTO GCALP )
CALL GCALP
C GLC G FIELD
VRITE (6,24)
24 FORMAT (25H CUT OF GCALP ,INTO GCAL )
CALL GCAL :
YRITE (6,25)
25 FORMAT (25H CUT OF GCAL ,INTO GCALG )
CALL GCALG
¥RITE (6426)
26 FORMAT (27H CUT OF GCALG ,INTO GDERIV )
CALL GDERIV
C OLC PLASTIC STRAINS
YRITE (6,27)

27 FORMAT (27H CUT OF GCERIV ,INTO GCALG )
CALL GCALG
REWIND 4
IF (CONTST.LE.O.) WRITE (6,30)

3C FORMAT (27H CUT OF GCALG , INTO PHICAL )

IF (CONTST.LE.O.) GO YO 36
C MAKE TERMINAL CALCULATIONS
C CLMP GNEWw FOR RESTART
C CCMPUTE AND DUMP TOTAL PLASTIC STRAIN
C CLMP SICE FOR RESTART
WRITE (6,28)

28 . FCRMAT (26H CUT OF GCALG ,INTO TRMNL )
CALL TRMNL
WRITE (6,29)

29. FORMAT (30H CUT OF TRMNL ,INTO ELASTC(2) )
€0 10 37
ENC

$SORIGIN WALT

$16FTC GRIDR DECK
SUBROUTINE GRID
COMMON AA,CONTST,C2,CSM,C1M,CGM,CGB,CGC,CRFP, DAY, DNMM, FMM,
2 ITER KL KMy KLOAD ¢yNyN2yNP yN2P 4 NT yNB ¢ NMW ¢ NMWP s NXCL ¢y NYCL  \NCELL,
3 AMWH,NMAX,Pl,P14,P18,PLM,Q,QBG,Q1,R(140),TIMA,TIMB, TMTGOF,
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TISTC . XMIN, XMEW
COVMMON FX(220),PHIB(220),L(220),XB(220),YB(229)

“CCMMON /ABCOVM/ ABC(1),AREA(400),AGSUM(2,400),C0SW(400),

COIT(800),CLX(400),CLY{400),CGSW(400),DEPX(400),DEPY(400),
CEPXY{400) DEPYN(400),DELG(400),ETAB(221),EPX(400),EPY(400),
EPXY(400),GBAS(400),COLD(400),M(220),TYPEL4CT),
RS({140)4RH(140),RSAV{140)},SIGE(400),WDR(14C),XIB(221)

REAL KLOAD

REAL L .M

CINENSION GRX(30)},GRY{30),CTRX(30),CTRY{30)

NAME LIST /PLAST/ GRXyGRY4NGRXyNGRYyNRSTRT4EMM, TMIN,KLOAD,
1STC 4 NMAX

C INITIALIZE GRID FOR PLASTIC ZONE

C ENMVF IS

XMEW=,33

READ {5,PLAST)

YMIN=3600,

C2=XMEW/ (1. =XMEWEX2)
CS¥==14/(1e+XMEW)

CiM==2,%[CSM-C2)

TANGENY MODULUS-RELATED TO STRAIN HARDENING
CNMM=],42,% (1, +XMEW) /3 *EMM/ (1, ~EMM)
CGM=2.%{ 1, +XNEW) /3,

CGB={l.—-XMNEWR%2)

CGC=XMEW/CGB

CAY=86400,%60,

CALL TIMEL(TIMAY

TMTGOF=TIMA+ TMINEXMIN

AXCL=NGRX~1

AYCL=NGRY-1

C CCFPUTE CELL CENTERS-LOOPS 11 AND 12

11
12
13

14

€0 11 J=2,NGRX
CTRX(J-1)=u5*(GRX(J=1)+GRX(J))

€C 12 J=24NGRY
CTRY(J-1)=.5%(GRY(J-1)+GRY (J))

¥RITE (6413) (CTRX{J), JI=1,NXCL)
FORMAT (18H CENTER OF X CELL 10F10.5)
WRITE (6414) (CTRY(J), J=1,NYCL]}

FORMAT (18H CENTER OF Y CELL 10F10.5)

NCELL=NXCL%®NYCL
Jc=1

C CCMPUTE CLX,CLY,AREA FOR ALL CELLS-LOOP 15

£0 15 J=1,NXCL

CXC=CTRX{J)
$OX=GRX{J+1)-GRX(J)

K=JC

CO 16 KK=1,NYCL

CLX(K)=CXC

CGSW(K)=0,

CosSw(KI=0,

CLY(X)=CTRY (KK)

IF (CLY(K).LTelaE-5) CLY{(K)=0.
¥DY=GRY(KK+1)-GRY{KK)

IF (KeLEJ264) GO TC 41
»0DY=,05

IF (CLY(K).EC.0.) GC TO 41

CLY(K)=CLY(K~1)+HWDY

41

AW=e5%KHDX
BW=.5%WDY
AL=ALOGIAWX®2+¥BW2%2) -1,
AB=AWX*BW



AREA(K)=4,%AB

ASB=AW/BW

ATN=ATAN(ASB)
COTT(K)=AL+2.*%ATN/ASE
COIT(K+400)=AL~2,%*ATN*ASB+ASB%P]

16 K=K+l
15 JC=JCENYCL
K=NCELL

C NSTART +N RESTART IN MIDDLE OF NTH LOAD
C NSTART -~N FIRST TIME NTH LOAD
NLCO=TABS(NRSTRT)
C INITIALIZE LOAD DEPENDENT VECTORS GBAS,EPX,EPY,EPXY,SIGE
IF (NLOD.GT.1) GO TO 22
C GBAS IS THE PART THAT DEPENCS ON SUM OF PREVIOUS
C PLASTIC STRAINS {(EPXsseee
CO 23 J=1,NCELL
CBAS(J)=0.
EPX(J)=0,
EPY(J)=0.
EPXY(J)=0.
SIGE(J)=1.
23 CONTINUE
CO TO 24
22 CALL BCREAD (GBAS(1),GBAS(K})
CALL BCREAD (EPX(1}),EPX(K})
CALL BCREAD (EPY(1l),EPY(K))
CALL BCREAD (EPXY{1l),EPXY(K))
CALL BCREAD (SIGE(1),SIGE(K))
CO 35 J=1.K

Y=SIGE(J}
IF (Y.GE.ls.) GO TO 35
SIGE(J)=1.
35 CONTINUE
YRITE (6,425) (GBAS(J)eJ=1,K}
25 FORMAT (TH GBASE 1P1OEll.4)
YRITE (6426) (EPX(J),J=1,K)
26 FORMATY (TH EPX 1P10E1l.4)
WRITE (6427) (EPY(J),J=1,K)
27 FORMAT (7H EPY 1P10EL1l.4)
28 FORMAT (7TH EPXY 1P10Ell.4)

YRITE (6428) (EPXY(J)sJ=1,K)
PRITE (6429) (SIGE(J)yJ=1,4K)

29 FORMAT (7H SIGE 1P10Ell.4)
C INITIALIZE G DEPENDENY VECTCRS GOLD,DEPX,DEPY,DEPXY
24 If (NRSTRT.GT.0) GO TO 17
€O 18 J=1,NCELL
CEPX(J)=0.
CEPY(J)=0.
CEPXY(J)=0.
18 COLD(J)=GBAS{J)
CO 70 19
17 CALL BCREAD (GOLD(1),GOLD(K))

CALL BCREAD (DEPX({1),DEPX(K))
CALL BCREAD (DEPY(1l),DEPY(K))
CALL BCREAD (DEPXY{1),DEPXY{K})
¥RITE (6431) (GOLD(J)sJ=1,K)

31 FGRMAT (7H G OLD 1P1CEll.4)
VRITE (6,32) (DEPX{J)yJ=1,K)
32 FORMAT (7H DEPX 1P1CEll.4)

WRITE (6+33) (DEPY(J)yJ=1,K)
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33

34
19

FORMAT (7H DEPY 1P10El11l.4)
WRITE (6534) (DEPXY(J),J=1,K)
FORMAT (7H DEPXY 1P10OELl.4)
RETURN

END

$IBFYC ELASTR DECK ’

DN

[C I8 B P N

2

SUBROUTINE ELASTC (NN)

COMMON AA,CONTST,C2,CSM,C1M,CGM,CGByCGC4CRFP,DAY,DNMM,FEMM,
ITER KL KMy KLOADyNyN2yNP N2P ¢NT,N8 yNMW s NMWP ¢ NXCL 4 NYCL NCELL,
MMWH,NMAX,PI,PI4,P]8,PLM,0,Q0BG,Q1,R(140),TIFA,TIMB, TMTGOF,
TSTCy XMIN, XMEW

COMMON FX(220).,PHIB(220),L(220),XB{220),YR{220)

COMMON /ABCONM/ ABC{1),AREA(400),AGSUM(2,400),COSW(400},
COIT(800),CLX1400),CLY{400),CGSW(400),DEPX(4%0),DEPY(400),
LEPXY(400),DEPYN(400),DELG(400),ETAB(221),EPX(400),EPY(400),

" EPXY{(400),GRAS{400),GOLD(400)4M(220),TYPE(4CN),

RS(140),RH{140) ,RSAV(140),SIGE(400),WOR{140),XIBL221)
REAL KLOAD

REAL LM

NAME LIST /INPUT/ N,L,M,XIB,ETAB,PNHIB, FX,AA

NAME LIST /PLAST/ GRX,GRY,NGRX,NGRY,NRSTRT,EMM, TMIN,KLOAD,
TSTC ,NMAX

IF (NN.GT.1) GO TQ 21

C GECMBTRY CEPENDENY SECTION

READ (5,INPUT)

C CCUNT UANKNOWNS

551

552

MMW=0

CO 551 J=1,N

IF (FX(J)eEQeOs) NMW=NMW+1
CONTINUE

XaNMW

WRITE (6,552) NMW
FORMAT (10H UNKNOWNS 15)
AMRH=NMW/2

AMWP=NMW/2+1

REWIND 2 ’

N2=N/2

AN2P=N2+1

C GENERATE XIB AND ETAB

1

€0 1 J=1,60
RS{J)sXIB(JY)
ASEC=RS(1)
JA=2
XIB(1)=RS(2)

- ETAB{1)=RS(3)

K=2

€0 3 JJ=1,NSEC
XW=RS(JUA)

YW=RS(JA+]1)

ASTEP=RS (JA+2)
YE=RS(JA+3)

YE=RS(JA+4)

XNS=NSTEP

EX=XE~XW

CY=YE-YW

IF (JJJLTJNSEC) GO T 11
RAT=RS{JA+S)

IF (RAT,EQ.les) GO TC 11
RP=RAT*sNSTEP

YI=RAT-1,

102



12
11

14
13

AL=X1/(RP-1,)%DX
¥S$SX=DY/OX

L0 12 KK=2,NSTEP
RP=RP/RAT
Aw=(RP-1,)/X1
CXV=—AW=AL
¥I1B(K)=DXV
ETAB(K)=DXV*YSX
K=K+1

¢O 70 13
CX=DX/XNS
CY=DY/XNS

CO 14 KK=2,NSTEP
¥IB(K)=XIB(K-1)+DX
ETAB(K)=ETAB(K-1)+¢DY
K=K+1

XIB(K)=XE
ETAB(K)=YE

KM=K=1

K=K+]

JA=JA+3

€O 4 KK=1,N2
YIB{KL=XIB(KNM)
ETAB(K)=-ETAB(KM)
KM=KM=-]

KxK+1

NT7=NMW

N8=140

ANP=N+1

C BASIC CCNSTANTS

10
15

F1=3,1415926

Fl14=4,.%P]

Fl1e=8,%*PI

C=1.E-12

CBG=1.E-8

Cl=1.-0

CA=-2,

CB=3.-6.%AA

CC=6.*AA*(1.-AA)

CO=AAXR2%(3,-2,%AA)

CO 10 J=1,yN
XB({J)S.S*¥(XIB{JI+XIB(J+1))

YB(J) =5« (ETAB(J)+ETAB(J+1))
FHIB{J)=0.

FLM=L(J)2M(J)

IF (PLM.NE.O.) GO TO 10
FHIB(II=(LCA#XB{J)+CBY=XB(JI+CCI*XR(J)+CD
CONTINUE

WRITE (6,15) (XB(J),YB(J}y J=1,N2)} .
FORMAT (TH XB YR 10F10.5)

C SET ARE#2 TO ZERC IF CELL CENTER QUTSIDE PLATF

T¢

ELW=L(N2)

EMh=M(N2)

CO 75 K=1,NCELL

IF (CLX(K}«.GT.0.) GG TO 75
CSC=EMWHCLY(K)+ELW*CLX{K}+.0001

IF (DSC.LT.0.) GO TO 75

PRITE (6,76) KyCLX(K),CLY{K),AREA(K])
FORMAT (16H CISCARDEC CELL 15.+3F12.5)
AREA(K)=0.
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15 CONTINUE
CRFP=1.
. RETURN
C LCAC DEPENDENT SECTION
C ELASTC (2) DOES THE FOLLOWING
C CCMPUTES SMALL PHI FROM KLOAD :
C CCMPUTES THE PART OF THE RIGHT HAND SIDETHAT IS NCY G DEPEND IN R(140)
C CCFPUTES THE PART OF THE STRESSES THAY CEPENDS ON SMALL PHI AJ,GJSUM
- € L2.NCELLY)
21 WRITE (6422) KLOAD,AA
22 FORMAT (TH KLOAD 2Fl0.4)
ITER=0
REWIND 8

READ (8) {(ABC{K},K=1,NMAX)
IF (CRFP.NEJl.) READ (5,PLAST)
WRITE (6,22) KLOAD
CRF=KLOAD/6.
C CCNPUTE SMALL PHI AND AGSUM
C RENOVE CLD CRF FACTCR
CO 43 J=1,4N
FHIB(J)=PHIB(J)/CRFP
43 FX(J)sSFXUJ)Y/CRFP
CO 44 J=1,NCELL
LG 44 K=1,2
44 BGSUM(K,J)=AGSUM(K,J)/CRFP
C USE NEW CRF FACTOR
L0 41 J=1,N
EX({JVSFX{JV*CRF
FHIB(J)=PHIB(J)*CRF
41 CONTINUE
C CCMPUTE AGSUM VECTOR
CO 42 J=14NCELL
CO 42 K=1l,42
42 BGSUM{K,J)=AGSUM(K,J)*CRF
WRITE (64INPLT)
CC 134 J=1,NMW
134 R{J)=WOR(J)%*CRF
CRFP=CRF
REWIND 8
WRITE (8) (ABC(K),K=14NMAX)
END FILE 8
RE TURN
END
$IBFTC VCALR
SUBROUTINE VCAL
COMMDN AQ,CONTST,C2,CSM,CIM,CGM,CGB,CGC,CRFP, DAY, DWW, FMM,
lTER,KL,KMyKLOADvaNZ!Np’NZ"'N"'NBQNMH.NMNP,NXCLyNY:._v.\'CELL'
AMWH,NMAX,PI,PI4,PI84PLM,Q,QBG+Q14R(140),TIMA,TIMB, T¥TGOF,
TSTC» XMIN4 XMEW
COMMON FX(220),PHIB(220)4+L(220),XB(220),YB(220)
REAL KLOAD
COMMON /ABCOM/ ABC(1),AREA(400),AGSUM(2,400),C0OSWI&ZD),
COIT(8030)4CLX{400},CLY(400),CGSW(400),DEPX(4D0),NEP~°4ND),
CEPXY(400)DEPYN(400)+DELG(400),ETAB(221),EPX(400),2>Y(4030),
EPXY(400),6BAS(400),GOLD(400),M(220),TYPE(4CD),
RS{160)4RH{140) yRSAV(140),SIGE(40D),WDR(14C),XIB(2213
REAL L,M
CIMENSION V(2,222)
C CALCULAYTE V MATRIX-SMALL A,8,C+D
C STICRE ON TAPE 2

rPWN

nwhrwnN
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121
122
132
12
41

124

2
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COo 11 J=1,N
CO 11 KK=1,2
VIKK+J1=0e
N2M=N2-]
DO 201 II=1,N2
I=11
PLI=L(I)%M{])
L1=2
CO 20 J=1,N
XI1J=100%1+J
IF (J.LE.N2) GD TO 121
JJ=NP=~)
GO0 10 122
JJd=J
K=JJ+N2
IF (M(J))12,16,12
PLM=L{J)%xM(J)
A1=YB(I)-ETAR(J)
Bl=YB(I)~-ETABR(J+]1)
82=XB(I)-XIB(J}
A3=XB(I)=-XIB(J+1)
84=XIB(J+1)~-XIB(J)
BI=-L(J)/M(J)
85=ALOG{A3*%24B]1%%2)
B6=ALOG(A2%*%2+A1%%2)
AT1=XB(I)+BJU*%2%XIB(J)+BJI%A]L
AT2=A1-BJ%*A2
BT3=M{J) %%2
CALCULATION CF A(I,J) STORED IN FIRST QUADRANT OF V(I,J),L(J)=0.
CA=0.
IF (1.EQ.J) GO TO 124
IF (ABS(A72).LT.Q) GO TO 124
CA=ATAN{ (XIB(J+1)/AT3-AT1)/AT2)
CA=DA-ATAN{(XIB(J)/AT3-ATY)/AT2)
I=1
VIT,JJ)=VII,JJ)+DA
CALCULATION OF B(I,J) STORED IN SECOND QUACRANT OF V(I4J)
CB==A4/M(J)=-S52M(J) & ({BI2BL+A3 ) %AS-(BIXAL+A2)%A6)+M(J) % (AL~
BJ%A2)%DA
VILK)=V(I,K)+DB
CALCULATICON OF C(I,J) STORED IN THIRD QUADRANT OF V(1,J)
VL1, JD)=VILL, JJ)+{AL1-BJ*A2) % (A4+2 ., %M (J ) *¥DB)
CALCULATION CF D{1,J) STORED IN FOURTH QUACRANT OF V{(I,J)
IF (PLM.EQ.0.) GO TO 123
D(I,J) ALONG NOTCH
AA=1o./M(J) %22
BJ=ETAB(J)-BJ=XIB(J)
I=11
-YD=YB(I})-AJ
EB=XB(I)+BJ%*YD
CC=XB(I)*%*2+YD*%2
CO=XB(I)*%3+YD%%3/BY
AS=AA%%R2
CA=(2.*AA*CC-RB%%2) /AA
AM=AAXCC-BB%%2
AM=ABS (AM) .
IF (AM,LT.0Q) AM=0,
IF (1.EQ.J) AM=0Q,
SA=SQRT(AM)
AN=3,*AA%BB%*CC-AS*DD~-2,%BB*%3



113
432

123

16

2G

202
2C1

$ORIGIN

106

x=XI1B8(J)
P1=CC-X*{2,%BB~X*AA)
P3==DD+X* (3, %CC+X%(~-3,%BRB+X%AA))
FS=X%2(QA+X*(-BB+X*AA/3,)}) N
F7=AA%X~BB
¥=x18(J+1)
F2=CC-X*(2.,%BR-X*AA)
Pa==DD+X* (3, %CC+ X% (=3, %BB+X%*AA))
FOE=X%{QA4+Xx(-BB+X*AA/3,))
F8=AA%X~-88
A7C=0.
IF (AM,LE.O.) GO TO 113
ATC=ATAN(PB/SA)-ATAN(PT/SA)
VILLyK)ISVILL K} +(P42ALOG(P2)~-P3*AL0OGIPL1)+2.%(P5-P6)~-ANXALOG
(P2/PL)Y/AS+4 R AMASARATC/AS I/ (6.%M(J))
FORMAT (5H 432 1P8El4.4)
CO 70 20
VLI yK)=VLLK) =eS%M(J)%( (A3%%3/3 ,4+A3%A1%%2 ) %A5-(A2%%3/3,+A2
BALRE2 )V RAE—4 (KA1 # %3 ELA/ 3,44, %A1 %82%A4/3,~2.%(A3%%3-A2%%3)/9,)
CO TO 20
M{J)=0.
Al=XB(1)-XIB(J)
A2=YR(I)-ETAB(J)
A3=YB(1)-ETAB(J+]1)
A4=ETAB(J+1)-ETABL(J)
AS=ALOG(A3*%2+A1 %%2)
A6=ALOG(A2%224+A) %%2)
AT=A1%A4/ (AL *%2+A2%A3)
CA=-ATAN(AT)
I=1
VIT,JJ)¥=V(1,JJ)+DA
CB=L(J) % (A4+ ,S®A3IXAS-,S*¥A2*A6+A1%2DA)
VITL,KY=VI(ILK)+DB
VIL1,JJ) ==A1%A4+2,. %L (J)*A1%DB +ViLl,Jd4)
VILYL s K)=VILL KI+oeSEL(J) 2 ((A32%3 /3, +A3%A) %52 ) %AS-(A2%%3/3 ¢+
A2%A1%%2 ) %A6+4, AL XXX DA/3 44, XAL%%2%A4 /3, ~2 . %(A3%%3-A2%%3)/9,)
I=11
RRITE (2) ((V(I,4J)y I=1,2), J=1,N)
Lo 202 1=1,2
C0 202 J=1,N
VII,J)=0.
CONTINUE
END FILE 2
REWIND 2
REWIND 8
RRITE (8) (ABRC{K) K=1,NMAX)
END FILE 8
RETURN
END
WALT

$IBFTC PARC DECK

SwmN

SUBROUTINE PART C

COMMON AA,CONTST,C2,CSM,C1M,CGM,CGB,CGC,CRFP,DAY ,DNMM, EMM,
TTER KLy KM KLOADy Ny N2y NP yN2P (NT NS, NMW NMWP s NXCL ¢y NYCL 4 NCELL,
NMWH, NMAX,PI,PI14,PI18,PLM,Q,Q0BG,Q1,R{140),TIMA,TIMB, TMTGOF,
TISTC s XMIN,y, XMEW

COMMON FX(220),PHIB(220),L(220),XB(220),YB(220)

REAL LM

REAL KLOAD

CIMENSION V(140,140)



51 -

52

11
22

13

$SORIGIN

CIMENSION DRW (440)

A8=140

NDB=2%N

NMW2=NMW/2

I=1

L1=NMWP

CO 11 KK=1,4N2

READ (2) (DRW{K), K=1,NDB)
IF (FX{KK)+NEsDde) GO TO 11

R(I)=D.
R{L1)=0.
J=1

Ji=1

CO 12 JW=14NDB,2

IF (FX(J)«NE.O.) GO TO 51
V(I,JJ)=DRW(JW)
VIL1yJJ)=DRW(JW+1})

GO TO 52
R{I)=R{I)-DRWIJIW)*FX{J)
R(LY)I=R(LL)-DRW(JW+1)*FX(J)
GO T0 12

Jd=JJ+1

J=J+l

Ll=L1+¢]

I=1+1

CONTINUE

CO 22 I=1,NMKW2
VII,1)=V(L,1)-PI

REWIND 2

WRITE (2) ({V(JyK)YyJ=14NB)K=14N8)

END FILE 2
REWIND 2
WRITE (6,13) NB8,N8

FORMAT (24H WRITE VvV CN 2 IN PART C 215)

RETURN
END
WALT

$IBFTC STCALR DECK

C CCMPUTES STRESS COEFFICIENTS MATRIX STCF(BXNCELLXNZ2)AJyCJUyEJseccces

SHwWwN

SUBROUTINE STCCAL

COMMON AA,CONTST,C2,CSM,C1M,CGMyCGB,CGC,CRFP, DAY DNMM, FMM,
ITER KLy KMyKLOAD¢NyN2,NPyN2P N7 4NB yNMW ,NMWP 4y NXCLaNYCL,NCELL,

TSTC o XMIN, XMEW

COMMDN FX(220),PHIB(220),L(220),XB(220),YB(220)

REAL KLOAD

C STORES IT ON TAPE

wmhrwWN

CIMENSION STA(20)

COMMON /STCOM/ ABC(1),AREA(400),AGSUM(2,400),COSW(400),
COIT(BUU),CLX(400),CLY(400),CGSW(400),DEPX(470),DEPY(40D),
CEPXY(400),DEPYN(4GO),DELG(400),ETAB(221)+EPX(400),EPY(400),
EPXY(400),GBAS{400) ,GOLD(40G0)+M(220),TYPEL4QT ),
RS(140),RH(140),RSAV(140),SIGE(400),4WDR(140),XIB(221)

REAL Lg4M
CIMENSION TAS(20,510)

C RESTORE ABC ARRAY

13

REWIND 8 :

READ (8) (ABC(K),K=1,NMAX)
CO 13 J=1,NMW

WDR{J)I=R{J)
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42
21
41

55

56

JR=1
KL=20

" REWIND 4

CO 1 JCL=1,NCELL

IF (JR.LE.20) GO TO 41
RRITE (4) ((TAS({JsK)J=149KL),K=1,510)
JCD=JyCL-1

JCB=JCL-KL

WRITE (6,42) JCB,JICD
FORMAT (13H TAPE 4 DUMP 215)
JR=1

CO 4 K=1,510
TAS{JR 4K ) =0,
STA(2)=CLX(JCL)
STA(3)=CLY(JCL)

8SB=0.

CSB=0.

STA (17)=ASB
STA(18)=GS8

€O 2 J=1,N

IF (JesLE.N2) GO TO 55
JJ=NpP~J

CO TO Sé

JJ=J

K=JJ+N2

STA(L)=J

STA(4)=JJ

C CELL CENTER AT (S2,S53)
C J AND JJ AT S1 AND S4

CALL CDCAL (S7TA)

C CUsDIEJ4FIyTI4KILAJ,LGJ AT S11-S18

- N

43

45

44

JC=(JJ-11%6+1

CO 3 K=11,416
TAS(JIR,JC)=STA(K)I+TAS(JIR,JIC)
JC=JC+1

IF (J.LT.N)} GO TO 2

AGSUM (1,JCL)=S5TA(17)
AGSUMI{2,JCL)=STA(18)

CONTINUE

JR=JR+1

JR=JR~1

JQ=NCELL

BRITE (64+43) JR,JQ

FORMAT (10H LAST ROW 215)

WRITE (6444) (AGSUM (1,K},K=1,JQ)
PRITE (6445)

FORMAT (25H ASUM ABOVE , GSUM BELOW )
WRITE (6,44) (AGSUM (2,K),K=1,JQ)
FORMAT (7H AGSUM 1P1lOEl2.4)
JCB=JCB+KL

JCD=JCD+KL

RRITE (6,42) JCB,JCD

WRITE (4) ((TAS{JeK)yJ=1,KL),K=1,510)
REWIND 8

PRITE (8) (ABC(K) K=1,NMAX)

END FILE 8

RETURN

END

$IBFTC CDCALR DECK

SUBROUTINE COCAL{STW}
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24

21
41

72
13

14
75

SC

Hwrn

WM wN

CIMENSION STW{1),STA(20)},VXW(8)

COYVON AALCONTST,C2,CSM,C1M,CGMyCGByCGC,CRFP,DAY,DNMM, EMM,
ITERyKLsKMyKLOAD ¢ Ny N2 yNP ,N2P yNT N8 ¢ NMW,NMWP 4 NXCL 4NYCL,NCELL,
AYnH,NMAX4P1,PI4,PI8,PLM,Q,QB8G,Q1,R{140),TIMA,TIMB, TMTGOF,
ISTC o XMIN,XMEW

COVMON FX{220),PHIB(220),L(220),XB(220),YB(220)

REAL KLOAD

COMNON /STCOM/ ABC(1)sAREA(400),AGSUM(2,400),COSW{420),
COIT(8UO)4CLX(400),CLY(400),CGSW(400),DEPX(400),DEPY(40C),
CEPXY(400) yDEPYN{400),DELG(400),ETAB(221),EPY(400),EPY(4D0),
EPXY(400),GBAS(400) ,GOLD(400),M{220),TYPE(400),
RS{140)4RH(140)RSAV(140),SIGE(400),WDR(14C}),XIB(221)}
REAL LM

REAL 1JsKJ

€0 1 K=1,18

STA(K)=STH (K]

IF (NR.EQ.5) GO TO 41

AR=5

J1s6=0

€C 21 J=1,4N

IF (L{J)«NE.O.) GO TO 21

J19=J

¥RITE (6424) J19

FCRMAT (5H J19 I5)

CO 10O 41

CCNTINUE

x=STA(2)

Y=STAY3)

SXA=STA(LT)

1XG=STA(18)

J=STAL(])

JJ=STA(4)

JSH=1

IF (L(JJ)eEQeQe ) JSW=-1

31=X~-XIB(J)

£2=X=-XIB(J+1)

A3=Y-ETAB(J)

£4=Y-ETAB(J+1)

IF (ABS(Al).LT.Q) GO TO 72

B5=ATAN(A4/A1)-ATAN{A3/ALl)

¢0 10 73

£5=0.

I1F (ABS(A3).LT.Q) GO TO 74

L6=ATAN(A2/A3)-ATAN(AL/A3)

co YO 75

86=0,

L T7=AYUA24AIN%2

2B=A2EE24+AL%%2

LG=ALOGI(AT)

L1C=ALOG(AR)

1F (¥(J)) 80,90,80

IF #(J)=0.

El=A7%A8

 E2=Bl*%*%2

2J=B %AL4(A3#ABER2-A4#ATE%2) /B2
£d=4,%L(J)*(A4RAT~A32A8) /B]

CJ=.5%A1#BJ/L(J)

CJ=L{J)5(A4*AL0-A3%AG-ETAB(J+1)+ETAB(J))

£J=4.8A5-CJ
FJ=L(J)%(4.®A1#A5+AGP(AL10-2.)~A3%(AG=-2,)-ETAR(J+LI+ETAR(J))
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80

57

wnN

110

CJ=4,%(AT-AB)/BLl+B. A1 5%2% (AB*#2-AT%%2)} /B2
FJI=4.%L(J)*A1%(AT~A8)/B1

1J=2. %A1 %%2%(AT-A8)/B1+A10-A9

KJ=L(J)*A1*(A10-A9)

€0 T0 95

BJJ==L(J)/MLI)

AJI=ETAB(J)-BJJIeXIB(J)

YD=Y=-AJJ

AW=X%eX4+4YD%*%2

EN==2.%(X€BJJI%YD)

Ch=1e+BJJI%%2

CW=XaX-YD*%2

Ew=—2.%({X=BJJ%YD)

LSS=4 o *AWXCW-BWE%2

CS2:=BWe%2-2, 4 AWACH

FHW=1e-BJJ*%2

CS=CH*%x2

FORMAT (8H DSZERO 1P4El14.5)

CS=SQRT(DSS)

XX=XIB(J+1)

XS=XXN®E%2

F2=2 % CHEXX+BW

F3=ANEBWRXX+CWEXS

F4=BREXX+2,%AW

FS=ATAN(P2/DS)

F3S=P3%%2

FOE=DS2%XX+BW*AW

¥X=XI18{J)

XS=XX#¥%2

F2X=2.%CHeXX+BW

F3XFAW+BWEXX+CW%XS

FaXaBWkXX¥24. %AW

FSX=ATAN(P2X/DS)

F3SX=P3X*%2

F5C=P5-pP5X

FOEX=DS2% XX+Bh%AW

AL=ALOG(P2/P3X)

YLE=X*L (J)-YC2M(J)

YLS=XEL(JI+YDEM(J)

IMC=X%¥M{J)-YC*L(J)

IL3==BJJ*x3%X-YD

EN2=NM(J) %22

EVM3=NM(J)*EM2

YMS=X%xM{J)+YC*L(J)
PI1=(P2/P3+4 ., %CW/DS*P5D0-P2X/P3X)/DSS
¥12==(P4/P3-P4X/P3X4+2.,*%Bw/CS* PSC)/DSS

X12=( 5% (P2/P3S~P2X/P3SX)+3,*CN/CSS*(P2/P3-P2X/P3X)+12.
$(CwW/DSS)*%24DS*P5D) /DSS

Y14== 5« (P4/PAS~P4LX/P3SX+3.%¥BWxX]1)/DSS
YI5==(XIB(J+1}/P3S=XIB{J)/P3SX-AWEXI34BWEXI4)/(3.%CW)
YIE=((P6E/P3-PEX/P3X)/CH+4, %AW/ DS*PS5D)Y /LSS
¥17=2.%PSD/DS
YIE=oSBAL/CSHBUHR(BWE22-6, 2 ANRCHWI*PSDEDS/ (CSEDSS%%2)=-BWH (BW%2
=3FAUWECR) /7 {CSEDSSI X (XIB(J4L)/P3-XIB(J)/PIX)I-AWS(BWER2-2 %AW
$CRh)/(CS*LSSI*(1,./P3-1,/P3X)

IG= (5% (P2ALOG(P3 ) -P2X*ALOG(P3X) )-P2+P2X+CS*PS5D)/CH
XI10=(5%AL-BW/DS*P5C)/CW
JI1I1=(CWHIXIB(J+1)-XIB(J))-e5%BW*AL+DS2/CS*P50D)/CS
REMEMBER BJ AND HJ MULTIPLY ZEROS



36

37

198

95

N

NN

VIiDWN

LN LR P VN

111

CI=2 /M{IVEXLSEXTTH+4 /M JIAXEYDEXMOEXT L 44 /M (J)R(AWEL(J)-2.%
YRYD/M(I) I EXT2-4.2 2, %L (J) /EMZ2AXMD4XLIIXXTE+4 XL () /EMIEXTR
CU=(XI9+2 % (YD*x#2%X17-2,%BJIJeYDAX]I10+BJI*%22XI11)+XIR(J+1)
-X180J)) /M)

EJ=b4 = XLSEXTT/M(N)-CY

FI=(XIG+424 % (XXEX[T=2xXEXT104XILLI+XIR(J+1)=-XIB(I))}/M(I)
TJ=2. 5 XMSEXTT/M{I) =2 2FWEX 11044 #XEYDEXLSEXT1/M(JIY-4. 5 XLS*XLD
AXT2/EM244 %L (J) EXLSHXI6/EM2

KI=2 5XAYDEXTT/M(J) 42, 5XLDEXT10/EM242,%BIJ2XT111/M(J)

BI=16e* (o S*XLDEXTILI=L(J)%XI2=XLS/ (3 5CH)* (12, *CWXDW+AWKFWIXX]3
4 {3 *CH*EW-BWXFW) *XT4-FWx(XIB(J+1)1/P3S-XIB(JI)/P3SX}))})}/M(J)}
CI==Be &XMSEXIL/M(J)+Ba %FWEXI2+432 xXkYDEXLSE*X 13/M(J)+32,%XLS
*XLDEXIG/EM2-32,, %L (J)AXLSE*XIS5/EM2

IF (JSW) 96,96,95

IF (J.NE.J19) GO TO 195

VXW(l1)=1,2

»S=X%X

EV=AA-1,

XA=X+AA

XV=X+AM

YAS=XA%%2

IMS=XMXEQ

VXW(2)=-1.2

CO 97 JK=1,2

ET=VXHW(JIK)

YA=Y-ET

YAS=YA%%R2

YAB=ABS(YA)

XAY=XAS+YAS

IMY=XMS+YAS

XAYS=XAY%*%2

IMYS=XMY%%2

BL=ALOG(XAY/XMY)

BTD=ATAN(XM/YAB)-ATAN(XA/YAB)

SET=YA/YAB

XAD= (XMS=XAS)/(XAY%XNY)

XY=24 %Y ARAL44B o #YAX (YAS-XS+{1s-2%AA)EX~-AAKAM)XXAD+8, % YA*(YAS
=2, XS 43, % (1, -2, ¥AA) X3, XAAXAM ) H( ( XAS-YAS)/XAYS—(XMS=Y¥AS)/XMYS)
H4B ASETH(X-o5%(1le—2%AA) ) SATD+GE, 2YAR{X~,5%(1,~2,%AA) ) *(XA/
YAY=XM/XVY)+16 2YAR(]1,5%(10e-2,%AA) % (XS~YAS)=X%(XS-3,%YAS)~

2o XAAXAMEX+ SHAARRZ2K (T2 %AA) IR XM/ XMYS~XA/XAYS)

W XRW{JIK+2)=XY
AX=]16e=24e%(X=e5%(1s -2, %AA) ) %AL 424, % (YAS=XS+(1,~2.,%AA)EX+AA%
(1e=AA) )% (XA/XAY=XM/XMY ) 448, 5YASH{ (S%(1,=2.%AA)=X)*XAD+16,%YASK
(YAS=3o%XS43.%(1o-2, ¥AA) X +3 XAAX( 1, -AA) I (XM/XMYS-XA/XAYS)
4B *YABEATD448  2YAS2(X~o5%(1e—2e%AA) V2 {10/ XMY=1o/XAY)+24,%(YAS
XS4 (1le~2.%AA)4X+AAX (1o —AA) YR (XA/XAY=XM/XMY ) +8,%(1,5%(1,-2.%AA)
BUXS—YAS)=XE(XS=3 A YAS) 43 xAAX (1o =BA) XX+ SHAARR2E(3 =2 ,%AA))
*{ (XMS~YAS)/XMYS=(XAS-YAS)L/XAYS)

VXW{JK+4)=XY

CONTINUE

BJI=VXN(3)-VXNh{4)

CJ=VXHW{5)-VXW(6)

EXA=SXA+AJ®CRFP

TXG=TXG+GJ*CRFP

€O 70 98

8J=0.

GJ=0. -

STRESSES

EXA=SXA+AJ%PHIB(JJ)



38

$ORIGIN

IXG=TXG+GJI*PHIB (JJ)
STAL11)=CJ
STA(12)=0Dd
STA(L3)=Ed
STAll&)=F)
SYA(1S)=1J
STA(16)=KJ
STA(1T71=SXA
STA(18)=TXG
CC 2 K=11,18
STH{K)L=STA(K)
RE TURN
END

WALT

$JBFTC DRCALR DECK

SUBROUTINE DRCAL

C COMPUTE DERVATIVE CCEFFICTENT (DRV) NEEDEC IN GDERIV

W

W

COMMON AA,CONTST,C2,CSM,C1M,CGM,CGB,CGC,CRFP,DAY ,DNMM,FMM,
JTER YKL KMy KLOADyNyN2y NP N2PyNT 4 N8 yNMW;NMWP 4, NXCL 4NYCL o.NCELL,
MMWH,NMAX,P]1,P14,P18,PLM,Q,QBG,Q1,R(140),TIMA,TIMB, TMTGOF,
TSTC, XMIN, XMEW _

CCVMMON FX(22CY,PHIB(220),L(220),XB(220),YB(220)

REAL KLOAD

CIMENSION DRV (20,400)

COVMMON /DRCOM/ ABC(1),AREA(400),AGSUM(2,400),COSW(400),
CCIT(800),CLX{400),CLY(4C0),CGSW(400),DEPX(400),DEPY(4ND),
CEPXY(400)+DEPYN(400)DELG(400),ETAB(221),EPX(400),EPY{(400),
EPXY(400),GBAS(400),GOLD(4C0)YyM(220),TYPE(4CC),
RS(140),RH(140) »RSAV(140),SIGE(400),WDR{140),X1B(221)

REAL LM

REWIND 8

READ (8) (ABC{(K) sK=1,NMAX)

NYCS=NYCL

€2=0.

CSv=-1.

Civ=2,

CC 41 J=s1.NCELL

KREM=2 {J/NYCLIRNYCL-J

JB=J+NYCL

JT=J-NYCL

CRVI2,J)=0,

CRVIS5,J)=0.

CRVI(6,J) =0,

CRVI(T4d¥=J

CRV(8,J)=J

CRV (44 J) =)

IF (J.GT.NYCL)Y GO TO 42

C SECTION FCR TOP BORCER CELLS

IF (AREA(J)eGT.0.) GC TO 43

C SECTION FCR POINTS CUTSIDE PLATE

47

43

44

42

CRV(1,J})=0.

- TYPE(J)=9,

€O T0 41 . -
IF (KREM,GE.C ) GO TC 44

TYPE(J)=10.

CO T0 41

1IYPE(J) =8,

CO YO 41

IF (AREA(J).LE.O.) GC TO 47

b¥XY=1,
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IF (CLY(J)«GT.0.) GO TO 45
C CENTER LINE SECTION
¥ XYz~1,
IF (AREA(JY) .GT.0.) GO TO 46
C SECTION FCR FIRST CELL BELOW MODTCH
TYPE(J)=6.
CO TO 41
46 IF (JBJLTLNCELL) GO TO 48
TYPE(J)=3,
CO TO 4}

C SECTYION FCR BOTTOM BORDER CELLS

45 IF (KREM,LT.0 ) GO TC S0

C SECTION FCR RIGHT BCRDER CELLS
TYPE(J)=T7,
IF (JB.GT.NCELL) TYPE(J)I=11.
GO T0 41

5C JB=J+NYCL
IF {(JB.GT.NCELL) GO 710 49
JUL=J~NYCL~]

IF (AREA(JUL)GT.0.,) GO TO 51
€ PCSTPONE TREATMENYT CF CELLS BORDERING ON NOTCH
TYPELtU) =4,
CO TO 41}
49 1YPE(J)=5,
CO T0 41}

48 TYPE(J)=2,
CYL=CLY{J+1)=CLY(S)

CO TO 52

51 CYL=CLY{J)-CLY(J-1)
TYPE(J)=1,

52 CYR=CLY(J+1)=~CLY ()
CXT=CLX(J)=CLX({IT
CXB=CLX(JIB)I=-CLX(J)
SUMX=DXB+DXT
SUMY=DYR+DYL
RAX=DXB/DXT
RAY=DYR/DYL
BET4==-RAY/SUNY
BET6=1./ (SUMY%RAY)
1SY=2./SUMY
T1SX=2+/75UMX
ALF4=TSY/DYL
ALF6=TSY/ODYR
BET2==-RAX/SUMX
BET8=1./(RAX*¥SUMX)
ALF2=TSX/DXT
ALF8=TSX/DXB
CRV{14J)=C2%ALF?2
CRV(2,J}1=CSM*ALF4
CRV(3,J)=-C2%(ALF2+ALFB)~CSME({ALF4+ALFS)
CRV{4,J)=CSM*ALF6
CRVI{5,4)=C2%ALF8
CERV(6,J)=CSM*ALF2
CRVIT J)=C2%ALF4&
CRVI(8,J)==CSME(ALF24ALF8)~C2%(ALF4+Al F§)
CRV(9,J)=C2%ALF6
CRV(10,J)=CSM*ALFB
CEL1=BET2%BET4*C1M
CEL3=BET2%BETH6=C1IM
CELT=BET4*RETB%*C1M

113



41

CELI=BETO6*BET8*C1M
CRV(11,J)=DEL1%WXY
CRV(12,J)s-DEL1-DEL3
CRV(13,J1)=DEL3
CRV{14,J)=~(CELL+DELT) *WXY
CRV(15,J)=DEL1+DEL3+DELT+DELS
CRVI(16,J)=-DEL3-DEL?
CRV(17,J)=DELT*WXY
CRV(18,J)=-DEL7-DEL9
CRVI19,J1=DEL9

CONTINUE

ANYCL=NYCS

C SECTION FOR NOTCH BORDER CELLS

$CRIGIN

55

54

56

57

53

11

CO 53 J=1sNCELL
TYPR=TYPE(J}

IF (TYPW.NEL.4.) GO TO 53
JB=J+NYCL

TYPB=TYPE(JB)

IF (TYPB.EQ.l.) GO TC 54

JB=JR4+NYCL

CO0 10 55

JBB=JB+NYCL
CJIB=(CLX(JI-CLX{JIB))/({CLX(JIBB)~CLX(JB))
CRV{1,4J)=e5%DJB

CRV(24J)=e5%(1.-DJB)

CRV(3,J)=JBB

CRV(4,4,J)=J8B

JR=J+1

TYPR=TYPE(JR)

IF (YYPR.EQ.l.) GO TC 57

JR=JR+1

€O TO 56
CUR=(CLY(J)-CLY(JR)I/(CLY(JR+1)-CLY(JIR))
CRV(5,J)=e5%DJR

CRV(64J)=e5%(1e~DJR)

CRV(T7,4J)=JR+1

CRV(8,J}=JR

CONTINUE

WRITE (4) ((DRV(J4K),J=1,420)+K=1,400)
WRITE (6,411) ABC(1)

FORMAT (33H WRITE DRV(20,4G0) ON 4 IN DRCAL F6,1)
END FILE 4

REWIND 4

REWIND 8

WRITE (8) (ABC({K),K=1,NMAX)

END FILE 8

‘RETURN

END
WALT

$IBFTC RHCALR DECK

C

MAwWnN

SUBROUTINE RHCAL

CALCULATION CF RIGHT HAND SIDE

COMMON AALCONTST,C2,CSM,C1M,CGM,CGB,CGC,CRFP,DAY,DNMM, EMM,
ITER KLy KMy KLOADyNyN2yNP yN2P 3y NT 3 NB s NMW,NMWP 4 NXCL,NYCL4NCELL,
AMWH NMAX P 4PI14,PI8,PLMyQ+QRGyQ14R(140)TIMA,TIMB, TMTGOF,
TSTC s XMINy XMEW

COMMON FX{220),PHIB(220),L(220),XB(220),YB(220)

REAL LM -

REAL KLOAD

CIMENSION V(140,140)
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11

54

53
26

34

35
39

25

SORIGIN

CRF=KLOAD/6.
A8=140
REWIND 2
RRITE (6,11) CRF,N8
FORMAT (244 READ V FROM 2 IN RHCAL F6.1,15)
READ (2) ((V(J,K),J=1,N8)4K=14N8)
REWIND 2
Al=1.-AA
B2=1.-24.%AA
AS=2,%A2
BO=3,%A2
BT=3.%AA%A1
B2=AA¥%2%(3.,-2,%AA)
JJ=1
L1=NMKWP
CO 25 I=1,N2
IF (FX(I).NE.D.,) GO TO 25
JP=1
CO 26 J=1,N2
IF (FX(J)«NE.O.) GO TO 26
IF (L(J).NELOs)} GO TO S4
IF (I.NE.J) GO TO 53
R{L1)=R(L1)+PI4*PHIB(I])
GO 10 53
IF (L{JY.NE.1,) GO TO 53
R{LL)=R(L1)~4.5V(JJ,JP)2PHIB(J)
JP=JP+1
CONTINUE
A3=XB(I)+AA
A4=XB(1)=-A1
YD=Y8(1)-1.20
YS=YD%%2
XS=XB(])*22
C=ALOG((A3%%2+YS)/(A4*%2+YS))
AY=ABS (YD)
IF (AY.GT.QBG) GO TO 35
E=0Q,
GO 10 39
E=(ATAN(A3/AY)~ATAN{AG/AY))/AY
R{LL)=R{LII =G . %5YD* (4 % XB{I)-AS+{YS=3.2XB(I)%%2+4A6%XB(1)+AT)%C
(2% XB{I)*¥(XS=3,%YS)+A6X(XS~YS)+2,*%AT«XB(])+B2)%E)*CRF
YD=-YB({1)-1,20
YS=YD%%2
C=ALOG{(A3%%2+YS )/ (ALEX24YS))
AY=ABS(YD)
E=(ATANCA3/AY)=-ATAN(AL/AY) )/ AY
RILI)=SRILLII-4e%xYD® (44 %XB({I)-AS+(YS=34%XB(I)%%24A6%XXB(1)Y4+AT)%(
~{ =2k XB(I)E(XS=3,%YS)+AOX(XS~YS )42, %AT=XB(1)+B2)*E)%CRF
Ll=L1+1
JI=JJ+1
CONTINUE
RETURN
END

WALT

$IBFTC RABCR DECK

SUBROUTINE RABC

C RESTORE ABC ARRAY

2
3

COMMON AALCONTST,C24CSM,C1My,CGM,CGB4CGCyCRFP, DAY yDNMM, EMM,
ITERy KLy KMy KLOAD yNyN2,NP¢N2PNT,N8 sNMW NMWP yNXCL 4 NYCL,NCELL,
NMWH NMAX,PI ,PI&,PI8B,PLM,Q,QBG,QL,R(140)TIMA,TIMB, TMTGOF,

115
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4 TSTCyXMIN, XMEW
COMMON FX(220),PHIB(220),L(220)4XB(220),YR(220)
COMMON /PHCOM/ ABC(1)+AREA(400),AGSUM(2,400),COSW(400},

2 COIT(800),CLX(400),CLY(400),CGSW(400),DEPX(400),DEPY(400),

3 CEPXY(400) +DEPYN{400),DELG(400),ETAB(221),EPX(400),EPY (400},

4 EPXY(400),GBAS(400),GOLD(400)4M(220),TYPE(40%),

5 RS5(140),RH{140),RSAV(140),SIGE{400),WOR(14C),XIB{221)
TNMAX=NMAX
RRITE (6,12) PI,TNMAX
CALL TIME1(TINMB)
IF (TIMBLLT.TIMA) TIMB=TIMB+DAY
TIME=(TIMB-TIMA) /XMIN
RRITE (6412) TIME,TIMA,TIMR, TMTGOF .
12 FORMAT (19H TIME TO GET READY F8.341P3E14,.5)
C SAVE BASE RIGHT HAND SIDES IN RSAV
REWIND 8
READ (8) (ABC(K),K=1,NMAX)
€O 35 J=1,NMHW
35 . RSAV(J)I=R(J)

RETURN
END

$IBFTC PHCALR DECK
SUBROUTINE PHICAL
C CALCULATE NEW CAP PHI AND PHIP R({140)
CIMENSION CRH{(140)
COMMON AA,CONTST,C2,CSM,C1M,CGM,CGB,CGC+CRFP, DAY, DNMM, EMM,
ITER KL KMy KLOADyNyN24NP3N2P ¢ NT ¢ NB yNMW , NMWP , NXCL ¢ NYCL 4 NCELL,
AMWHNMAX4PI 4PI4,4,PI8,PLM,Q,QBG,Q1,R(140),TIMA,TIMB, TMTROF,
TSTC+ XMIN, XMEW
COMMON FX(220),PHIB(220),L(220)4XB(220),YB(220)
REAL KLOAD
COMMON /PHCOFM/ ABC(1),AREA(400),AGSUM(2,40C),COSW(400),
COIT(800),+CLX(400),CLY(400),CGSW(400),DEPX(400),DEPY(4D0),
CEPXY(400) ,DEPYN{400)+DELG(400),ETAR(221),EPX(400),EPY{4N0),
EPXY{400),GBAS{400)},GOLD(400)sM(220),TYPE(4OD),
RS(140)4RH{140),RSAV(140),SIGE(400),WOR({140),XIB(221)
C INITIALIZE RIGHT HAND SIDES
IF (ITER.LE.O) GO TO 22
REWIND 8
READ (8) (ABC(K) K=1,NMAX)
22 SHK=1.
CO 1 J=1,NMW
1 R{J)=RSAV(J)
' J=99
Ch=1.,
CAP=1,
NCRHS=0
SWG=1.,
WRITE (6416) JyGWyGAP,SHWy SHWGy (R(K)yK=1,NMW)
C ACD G DEPENDENT TERMS TO R.HeS.
CO 2 J=1,NCELL
ShW=T,
SHG=T,
CW=GOLD(J)
C SKIP CALCULATIONS WHEN G-IS ZERO
IF (GW.EQ.0.) GO TO 21
ShH=COSW(J) :
ARW=AREA(J)
CAP=GH*ARW
JQ=1

HwWN

mdwmNn
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KQ=NMWP .
C ARE COEFFICIENTS ON TAPE FOR THIS CELL
C CCSW(J) NCN ZERQ
IF (SWWeNELO.,) GO TO 11
C CCMPUTE AND STORE COEFFICIENTS FOR THIS CELL,EQ.BY EQe IN CRH
XTw=CLX{J)
CO 3 JY=1,N2 .
C IS THIS AN EQUAYION YO TREAT
IF (FX{JY)}«NE.D.) GO TO 12
C YES IT IS
JON=JQ+1
KQN=KQ+1
RJC=0.
RKG=0.
ETW=CLY{(J)
XW=XB{JY)
YR=YB{JY)
CX=XW=XIW
CY=YW~ETHW
14 RSQ=DX%%2+DY % %2
AL=.5%ALOG(RSQ)
RAL=AL*RSQ
RJQ=RJQ-AL
RKQ=RKQ-RAL
IF (ETWelLE.O.) GO TO 13
CY=YW+ETHW
ETW=0.
CO TO 14
C CRH (14C) CONTAINS THE CURRENY RIGHT HAND COEFFICIENTS
13 CRH(JO)I=RJIQ
CRH(KQ)=RKQ
¢0 TO 15
12 JAN=JQ
KQN=KQ
15 JQ=JQN
KQ=KQN
3 CONTINUE
SHG=1
CALL TABLE (1 4JySWG,CRH)
COSW(J)=SWG
GO TO 411
11 Shh=-1,
CALL TABLE (1 4JySWW,CRH)
411 CO 4 JY=2,NMWP
JQ=JYy-1
R{JQ)=R{JQI+GAPECRH(JQ)
KQ=JQ+NMWH
R{KQ)=R(KQ)+GAP*CRH(KQ)
4 CONTINUE
ANCRHS=NCRHS+1
C WRITE (6416) J,GW,GAP
JL=J
16 FORMAT (9H CUR RHS 15,4F12,1/(3X,1P10E12,5))
GO TO 2
21 SW=0.
CALL TABLE (14+J,SW,CRH)
2 CONTINUE
REWIND 8
MRITE (8) (ABC(K),K=1,NMAX)
END FILE 8



IF (NCRHS,LE.O0) RETURN

J=JdL

WRITE (6916) JoGWyGAPsSWHW;SWG, (R{K)4K=14NMKW)
RETURN -

END

$IBFTC TABLER DECK

31

13

11

SN

MdSwn

SUBROUTINE TABLE (NTB,JCLsSWY,TBW)

CIMENSION TBW(1)

ITER s KLy KMy KLOAD yNgN24NP N2P N7 yN8 y NMWy NMWP ¢ NXCL yNYCL 4 NCELL,
AMWH,NMAX,PT 4 PI4,PIBPLM,Q, QBG.QI R(IQO).TIMA.TIMB.TMTGOF,
TSTCy XMIN, XMEW

COMMON FX(220),PHIB(220),L{220),XB{220),YB(220)

REAL KLOAD

COMMON /PHCOM/ ABC(1),AREA(400),AGSUM(2,400),COSW(400),
COIT(800),CLX{400),CLY(4C0O),CGSH(400)DEPX{40G0),DEPY(400),
CEPXY(400),DEPYN(400), DELG(400),ETAB(221),EPX(400),EPY(400),
EPXY(400).GBAS(400).GOLD(400),M(220),TYPE(40’)'
RS(140)4RH(140),RSAV(140),SIGE(400),WDR(140),XIB(221)

REAL LM

CIMENSION TAB(70,140),TUB(8,1200)

EQUIVALENCE (TAB(1,1),TUB(1,1))

JG=JCL . :

SW=SHWY

IF (K8.EQ.8) GO TO 31

KT7=70

K8=8

K6=NCELL/KT +1

K5=NCELL/K8 +1

MR=ABC (1)

If (NR.EQ.5) GO 10 11

xIg(221Y=1,

WRITE (6,13) K5,K6,KT,K8,ABC(1)

FORMAT (33H INITIALIZE TAB AND TUB IN TABLE 4I6,F6.1)
ABC(1)=5.

REWIND 3

REWIND 1

CO 1 JQ=1,Ké

BRITE (1) ((TAB(JyK),J=14KT}),K=1,140)

£O0 2 JQ=1,K5

WRITE (1) ((TUB(JsK)J=1,K8),K=1,1200)

ENC FILE 1 ’

REWIND 1

ATW=NTB

‘C RKS SECTION TAB(K7,140) LOGR,RHO

41

15

16
23

IF (JG.NE.1) G0 TO 15

READ (1) ((TAB{(J4K)syJ=14K7),K=1,140)
WRITE (6,41) JG,XIB(221)

FORMAT (32H READ TAB FROM 1 IN CORE LOAD 6 [5,FB8.1)
XIB(221)=XIB(221)+1., '

KROW=1

IF (KROW.LE.KT)Y GO TO 16

KRCk=1

RRITE (3) ((TAB(JsK)J=1,KT)yK=1,140)
READ (1) ((TAB(J4K) s J=1,KT},K=1,140)
PRITE (6,41) JG,XIB(221)
XIB(2211=X1IB(221)+1.

IF (SW) 22,17,23

€0 3 K=1,140

TAB(KROW, K1 =TBW(K)
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7
17

18

$ORIGIN

G0 10 17
CO 7 K=1,140
IBW(K)I=TAB(KROW,K)
IF (JGJNE.NCELL) GO 7O 18
WRITE (3) ({TAB(J,K),J=1,KT7)4K=1,140)
KRCW=KROW+1
RETURN
END
WALT

$IBFTC SOLVER DECK

C REAC V

6C1L

$ORIGIN

Swn

SUBROUTINE SCLVE
COVMMON AAL,CONTST,C2,CSM,C1M,CGM,CGB,CGC4CRFP,DAY yDNMM, EMM,
ITERyKL s KMy KLOAD yNy N2y NP ¢N2P 4 N7 ¢ N8 y NMW, NMWP ¢ NXCL y NYCL,NCELL,
NMWH ¢ NMAX,PI ,P14,PI8,PLM,Q,QBG,01,4R(140),TIMA,TIMB, TMTSOF,
TSTC s XMIN, XMEW
COMMON FX(22C),PHIB(220),L(220),XB{(220),YB(220)
REAL KLOQAD
FATRIX FROM TAPE 2
CIMENSION V(140,140)
CIMENSION NRW(150)
A8=140
REWIND 2
READ (2) ((V{JsK)yJ=1y,NB),K=1,N8)
WRITE (6,601) (R{J),J=1,NMW)
FORMAT (5H RHS 41P10E12.4)
CALL FACTOR (V4NRW,NT7,N8)
CALL SIMEQ (V4«NRW,NT7,N8,R)
RRITE (64601) (R(J),J=1,NMW)
RETURN
END
WALT

$IBFTC GCALPR DECK

SUBROUTINE GCALP

C CAP PHI DEPENDENT PART OF STRESS CALC

11

41

SWN

N

nmdwNn

COMMON AA,CONTST,C2,CSMyC1M,CGMyCGRsCGC+CRFP,DAY,DNMM, EMM,
ITERy KL KMy KLOADsNyN2,NP yN2P N7y N8 y NMH s NMWP y NXCLyNYCL,NCELL s
NMWHyNMAX4PL,PI4,PIB4PLM,Q4QBG+QLyR(140),TIMA,TIMB, TMTGOF,
TSTC s XMIN ¢ XMEW

COMMON FX(220),PHIB(220),L(220),XB(220),YB(220)

REAL KLOAD

COMMON /STREP/ SX{400),SY{(400),SXY(400),S2Z(400),SIGEQ{400),
TEX(400),TEY(400),TEXY(400)

COv¥MON /GPCOM/ ABC(1),AREA(400),AGSUM(2,400),COSW(400),
COIT(B800),CLX(400),CLY(400),CGSW(40D),DEPX{400),DEPY(4N0),
CEPXY(400) ,DEPYN(400),DELG(400),ETAB(221),EPX(400),EPY{400),
EPXY(400),GBAS{400),G0LD(400),M{220),TYPE(4CU),
RS(140),RH(140),RSAV(140),SIGE(400)+WDR{140),XIR(221)

REAL L,M

CIMENSION TAS(20,510)

IF (K2.EQ.20) GO TO 11

K2=20

KROW=1

REWIND 8

READ (8) (ABC(K),K=1,NMAX)

CO0 1 JO=1.NCELL :

IF (JQeNE.1l} GO TO 12

READ (4) ({(TAS(J,4K),J=1,K2),K=1,510}

WRITE (64,41) JQ,XIB(221)

xIB(221)=XIB(221)+1.

FORMAT (32H READ TAS FROM & IN CORE LOAD 8 15,F8.1)
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13

57

58

2¢C
17
18

19

$ORIGIN

IF (KROW.LE.K2) GO TC 13
KROW=1

READ (4) ((TAS({J,K},J=1,4K2),K=1,510)
YRITE (6,41) JO.XIB(221)
x18(221)=X1B(221)+1.

kKB=1

If (AREA {JQ).LE.O0.) GO YO 15
SX1JQ)=AGSUM(1,JQ)
SY(JQ)=-AGSUM(1,JQ)
SXY{JQ)=AGSUN(2,4Q)

J=KROW

JG=1

CO 2 JJ=1.N2

IF (FX(JJ).EC.0.) GO TO 57
RJB=FX(JJ)

JW=JIHN2

RIW=FX(JIW)

CO 70 58

RJB=R(JG)

JW=JG+NMWH

RIW=R(JW)

JG=JG+1
SX(JQ)=SX{JQ)+TAS(J,KB)*RIB+TAS(J,KB+1)*RJHW
SY(JO)=SY(JQ)+TAS{J,KR+2}%RIB+TAS(J,KB+3)*RJW
EXY(JQI=SXY(JQ)+TAS(JsKB+4)XRIB+TAS(J,KB+S)*RIW
KB=KB+6

GO YO 16

€£X{JQ)=0.

£Y(JQ)=0.

£XY{JQ)=0.

KRCW=KROW+1

CONTINUE

J=99

Ch=1l.

CAP=1,

SHK=1.

SWG=1.

WRITE (6,20) J,GWyGAP,SWHWHySHG

FCRMAT (39H CUMULATIVE STRESS AFTER NONZERQ 5 USE 15,4F12,.4)
BRITE (6417) (SX{K),K=1,NCELL)

FORMAT (5H SX 1Pl0El1l2.4)

WRITE (6,18) (SY(K),K=1,NCELL)

FORMAT (5H SY 1P10E12.4)

WRITE (6,19) (SXY(K) 4K=14NCELL)

"FORMAT (SH SXY 1P10E12.4)

REWIND 8
WRITE (8) (ABC(K),K=1,NMAX)
®RITE (B) (SX(K),K=1,12G0)
END FILE 8
RETURN
END

WALT

SIBFTC TABLEC DECK

DWN

SUBROUTINE TABLE2(NTB,JCL,SHY,TBW)

CIMENSION TBW{1l)

COMMON AA,CONTST,C2,CSM,C1M,CGM,CGByCGCyCRFP, DAYy DNMM, EMM,
TTER KLy KM KLOADyNy N2y NP 4N2P 4 N7 N8B yNMW,NMWP ,NXCL,NYCL,NCELL,
AMWHNMAX3PI 4P14,PI8,PLM,Q,QBG,Q1,R(140),TIMA,TIMB, TMTGOF,
TSTC,XMIN,XMEW

COMMON FX(220),PHIB(220),L(220),XB(220),YB(220}
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REAL KLOAD

COVMON /GCCOM/ ABC(1),AREA(400),AGSUM(2,400),COSW(400),
COIT(BOO),CLX(400),CLY(4U0),CGSW{400),DEPX(4L0),DEPY(400),
CEPXY (400) ,DEPYN(400) ,DELG(400),ETAB(221),EPX(400),EPY (40D},
EPXY(400)+GBAS(400),GOLD(400)4M{220),TYPE(400),
RS{140)4RH(140) 4RSAV(140),SIGE(400),WDR(140),XIB(221)

REAL LM

CIMENSICN TAB(70,140),TUB(8,1200)}

EQUIVALENCE (TAB{l,1),TUB(1,1})

JG=JCL :

SW=SHWY

IF (K8.EQ.8) GO TO 31°

K7=70

K8=8

K6=NCELL/K7 +1

K5=NCELL/K8 +1

NS=NCELL-{K5-1)*K8 :

AR=ABC(1)

NTW=NTB

C CERIVATIVES OF RHO SECTION NEEDED IN G PART DF STRESS CALCULATIONS

12

41

19

20

24
21

18

IF (JG.NE.1) GO TO 19

READ (1) ((TUB(J4K)J=1,KB),K=1,1200)

FRITE (6441) JG,XIB(221)

FORMAT (32H READ TUB FROM 1 IN CORE LOAD 1CI5,F8.1)
XIB(221)=XIB(221)+1.

KROW=1 : :

IF (KROW.LE.K8) GO TC 20

KROW=1 .

WRITE (3) ((TUB(J4K)4I=1,K8),K=1,1200)

READ (1) ((TUB(JsK)»J=14KB)4K=1,1200)

"WRITE (64,41) JG,XIB(221)

XIB(221)=XIB(221)+1,

IF (SW) 24,21,25

CO 4 K=1,1200

TUB{KROW,K}=TBW(K)

GO 70 21

CO 8 K=1,1200

TBW(K)}=TUB(KROW,K)

IF(JG.NE.NCELL) GO TC 18

WRITE (3) ((TUB(J+K}sJ=1,K8)sK=1,1200)
END FILE 3

REWIND 3

REWIND 1

CO S5 JQ=1,Ké6

READ (3) ((TAB(JsK)4J=1,KT7),K=1,140)
WRITE (1) ((TAB(JyK)J=1,K7},K=1,140)
CONTINUE

CO 6 JQ=1,4K5

READ (3) ((TUB(J,K)yJ=1,K8),K=1,1200)
PRITE (1) ((TUB(Jy4K)},4J=1,K8),4K=1,1200)
CONTINUE

ENCFILE 1

REWIND 1

" REWIND 3

KROW=KROW+1
RETURN -
END

$IBFTC GCALR DECK

SUBROUTINE GCAL
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COMMON AA,CONTST,C2,CSM,CIM,CGM,CGB,CGCyCRFP DAY, DNMM, EMM,
ITERG KLy KMy KLOAD Ny N2y NP N2P yNT N8B ,NMW 4 NMWP y MXCLyNYCL ¢ NCELLY
AMWH yNMAX 4 PL 4P14,PI8,PLM,Q0,QBG,Q1,R{140),TIMA,TIMB, TMTGOF
ISTC o XMIN,XMEW '

REAL KLOAD

COMMON /GCCOM/ ABC(1),AREA(4DO),AGSUM(2,400),COSN(400),
COIT(800),CLX(400),CLY(400),CGSH(400),DEPX(4L0),DEPY (400,
CEPXY (400) yDEPYN(400)yDELG(400),ETAB(221),EPX(400),EPY(400),
EPXY(400),GBAS(400),GOLD(400),M(220),TYPE(4DG),
RS(140)4yRH{140),RSAV(140),SIGE(400),WDR{140),XIB(221)

REAL LgM

CIMENSION SX{(430),SY(400),SXY1400)

CIMENSION CCV{1200)

C G-CEPENLENT PART OF STRESS CALCULATIONS

1

JNUM=3*NCELL

KROW=1

REWIND 8

READ (8) (ABC(K),K=1,NMAX)
READ (8) (SX{K)yK=1,1200)
JB8=NYCL

JCK=0

€0 3 J=1,NCELL

SHNW=T.

SWG=7.

CW=GOLD(J)

C SKIP CALCULATIONS WHEN G IS ZERO

IF (GW.EQ.0.) GO 70O 21
¥Iw=CLX(J)
SwW=CGSH(J)
ARW=AREA(J)
CAP=GH*ARW

C HAVE COEFFICIENTS BEEN COMPUTED
C YES IF CGSW NON ZERC

IF (SWW.NE.O.) GO TO 31
JC=1

C CCMPUTE CCEFFICIENTS

34

CO 4 JQ=1,JNUM,3

IF (AREA(JC)+LELO.) GO TO 41
RX=0,

RY=0.

RXY=0.

ETW=CLY(J)

XW=CLX(JC)

YW=CLY(JC)

EX=XW~XIW

CXS=DX%%2

CY=YW-ETW

CYS=sDY%*2

RSC=DXS+DYS

IF (RSQ.GT.0.) GO TO 42

C CELL ON ITSELF SECTION

42

331

RX=COIT(J)

RY=COIT(J+400)

RXY=0,.

€O YO 331 . -
AL=ALOG(RSQ)
RX=RX+AL+2.%DYS/RSQ+1.,
RY=RY+AL+2.%#DXS/RSQ+1,
RXY=RXY+2,%*DX*DY/RSQ

IF (ETWelE.GCe) GO TO 33

& e
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22
23

3

43

20
17
19

21

OO

$ORIGIN

CY=YW+ETW

ETw=0.

CO0 YO 34

CCVIJQI=RX

CCVIJG+1)=RY

CCVv{JQ+2)sRXY

JC=JC+]

CONTINUE

SWG=1.

CALL TABLE2(24J4SWG,CCV)
CGSWI{J)=SHG ’

IF (J.NEL.T75) GO TO 43

CO0 22 J4X=1,1200,10

JE=JX+9

RRITE (6423) JX,(CCVIK)K=JX,JE)
CONTINUE

FORMAT (4H 75 15,1P10E12.4)

‘€60 TO 43

Shk=—1,

CALL TABLE2(24JsSHWW,CCV)

JQ=1

€0 5 JC=1.NCELL

IF (AREA(JC).LE.O.) GO TO 44
SX(JC)I=SX(JC)I+GAPXCCV(JQ)
SY(JC)I=SY(JC)I+GAP®CCV(JQ+1)
SXY(JC)=SXY{JC)+GAPXCCV(JQ+2)
JQ=J0Q+3 '

CONTINUE

YRITE (6420) JoGWyGAPySHW, SKG
FORMATY (394 CUMULATIVE STRESS AFTER NONZERD 5 USE 15,4F12.4)
JCK=JCK+1

FORMAT (5H SX 1P10E12.4)
FORMAT (5H SY 1PI10E12.4)
FORMAT (5H SXY 1P10El12.4)

€O 70 3

SW=0e

CALL TABLE2(2,J,5SW,CCV)
CONTINUE

REWIND 8

PRITE (8) (ABC{K) K=1,NMAX)
WRITE (B8) {SXtK)K=1,1200)

END FILE 8

IF (JCKJ.LE.O) RETURN

WRITE (6,17) (SX(K)yK=1,4NCELL)
WRITE (6418) (SY(K),K=1,NCELL)
WRITE (6419) (SXY(K) +K=1,NCELL)

"RETURN

END
WALT

$IBFTC GDRVR DECK

C

€ STRAIN

HWN

SUBROUTINE GDERIV

COMPUTES DELG BY TAKING DERIVATIVES OF PLASTIC
INCREMENTS y DEPX,LETC,

CIMENSION C(20)

COMMON AA,CONTST,C2,CSM,C1M,CGM,CGB,LGCyCRFP, DAY, DNMM, EMM,
ITER KL KMy KLOADyNyN2yNP yN2P yNT, N8 g NMW, NMWP , NXCL,NYCL ,NCELL,
NMWH NMAX,PI,P14,PI8,PLM,Q,QBG,QLlyR(140),TIMA,TIMB, TMTGOF,
TSTC y XMIN» XMEW

COMMON FX{220),PHIB{220),L(220),XB(220),YR(220)

REAL KLOAD

123
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COMMON /GDCOM/ ABC(1),AREA{400),AGSUM(2,400),COSW{400),
COIT(800),CLX(400),CLY{400),CGSW(400),DEPX(400),DEPY(400),
CEPXY(400),DEPYN(400),DELG(400),ETAB(221),EPX(400),EPY(4C0),
EPXY(4C0O),GBAS(400),GOLD(400),M(220),TYPE(4OC),
RS{140)yRH(140),RSAV(140),SIGE(400),WDR(140),XIB(221)

REAL L,M

CIMENSION DRV{20,400)

READ (4) ((DRV(J4K)4J=1,20),K=1,400)

xIB(221)=XIB(221})+1.

C COMPUTE DELG FOR INTERIOR PCINTS AND MOST CENTER LINE POINTS

C

95
94
96

12

11

81
82

i wN

SECTION FOR INTERIOR PLASTIC POINTS
NLB=264

CGAV=0.

CGNM=0.
NDC=GBAS(NCELL+2)-GBAS(NCELL+1)

IF (NDC.LT.,0) GO TO 94

CO 95 J=1,NCELL

IF (DELG(J)+EQ.D.) GG TO 95
CW=DEPY(J)I+EPY(J)

IF (DW.NE.O.) GO TO 95

CELG(J)=0.

CEPYN(J)=0.

CEPX(J)=0.

CEPXY(J)=0.

CONTINUE

WRITE (6496) NDC

FORMAT (5H NDC 15)

NYCS=NYCL

CO 1 JC=1,NCELL

TYPW=TYPE(JC)

JR=JC+1

JT=JC-NYCL

JB=JC+NYCL

IF (TYPW-2.) 11,12,1

JL=JR

JUL=JT+]

JLL=JB+1

€0 TO 13

JL=JC-1

JuL=JT-1

JLL=J8-1

CO 2 K=1,19

C(K)=DRV(K,JC)

IF (DELG(JC).EQ.0.) GO TO 1
JCD=(JC-253)*(JC~-276)

IF (JCD.LE.O) GO TO 1
FRD=DELG(JC)*DELG(JC+1)*DELG(JLI*DELG(JULI*DELGIJILLIXDELG(JIT+1)
2DELG(IB+1)*DELG(JT) *DELG( UB)

IF (PRD.EQ.O.) GO TO 1

IF (JC-264) 81,81,82

IF (TYPE(JC).EQe2.) GO TO 1
CELG{JC)=C(L)I*XDEPX(JTI+C(2)*DEPX(JL)I+C(3)*DEPX(JICI+C(4)=DEPX(JIR
J4C(S)I*DEPX(JB)+C(6)*DEPYN(JTI+C(TI*DEPYN(JL)+C(B8)*DEPYN(JC)+
C{9)%*DEPYN(JR)I+C(LO)*DEPYN(JUBI+C(11)*DEPXY(JULI+C{12)*DEPXY(JT)

4C(13)2DEPXY(JT+1)+C (14 ) *DEPXY(JLI+C{LIS5)*DEPXY(JC)I+C(16)%

CEPXY{JRI+C(17)*DEPXY{JLL}+C(18)*DEPXY(JUBI+C{19)*DEPXY(JR+1)
IF (JCu.LECNLB) GO TO 1

IF (DEPY({JC).EQeO.) GO TO 1

CGAV=DGAV+DELG(JC)

CGNM=DGNVM+1,



91
92

93

97

21

22

24

25

26

27

“yJIC=JC

WRITE (6,92) DELG(JC)4XJCyCGNM
CONTINUE .
NYCL=NYCS

CGS=1.1

IF (DGNM,LE.C.) GO TO 91
CGS=DGAV/DGN¥

*RITE 16,92) DGS,DGAV,DGNM
FORMAT {9H GROTTOM 1P3E16,.6)
CMX=GBAS (NCELL+4)

CMN==GMX

CO0 93 J=NLB,NCELL

IF (DEPYN(J).EQ.0.) GO TQO 93
IF (DELG(J).GCT.GMX) DELG(J)=GMX
IF (DELG(J)eLT.GMN) DELG{J)=GMN
CONTINUE

SECTION FOR BORDER PLASTIC POINTS
C0 5 JUwW=1,NCELL

J=ENCELL+1-~JW

wWOG=DELG(J)

IF (WDG.NE.2.) GO TO 5
WIP=TYPE(J)

JT=J-NYCL

JB=J+NYCL

€D=0.

KND=0

IF (WTP.NEJls) GO TO 21
JuL=JT71-1

JL=J-1

JLL=JUB-1

€0 10 22

IF (WTP.NE.2.) GO TO 23
JUL=JT+1

JL=J+}

JLL=JB+1

®D=DELG(JUL)

FD=WD*(2.,~WD)

IF (PD.EQ.0.) GO TO 24
KND=KND+1

SD=SD+WD

WD=DELG(JT)

FD=WD%*(2.-WD)

IF (PD.EQ.D.) GO TO 25
KND=KND+1

SD=SD+WD

WD=DELG(JT+1)

FD=WD*(2,-WD)

IF (PD.EQ.0.) GO TO 26
KND=KND+1

SD=SD+WD

wD=DELG(JIL)

FD=WD*(2,-WD)

IF (PD.EQ.0.) GO TO 27
KND=KND+1

SD=SD+WD

- WD=NELG(J+1)

FD=WD*(2.~-WD)

IF (PD.EQ.0O.) GO TO 28
KNO=KND+1

$D=SD+WD
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28

29

30

31

37

23
32

35

36

33

38

39

34

51

»O=DELG(JLL)
FD=WD%(2.-WD)

IF (PD.EQ.C.} GO TO 29
KND=KND+1

SD=SD+KD

wD=DELG(JB)
FO=WD%(2.-WD)

IF (PD.EQ.0.) GO TO 30
KND=KND+1

SD=SD+WD

WO=DELG(JB+1}
FD=WD*(2.-WD}

IF {(PD.EQ.O.) GO TO 31
KND=KND+1

SD=SD+WD

XKND=KND

CELG(J)=SD

IF (KND.LE.1) GO TO 5
CELG{J)=SD/XKND

CO TO0 S

IF (WYP-4,) 322,33,34
TYPE 3 POINT
¥D=DELG(JT)
PD=WD%*(2.~-WD)

IF (PD.EQ.O0.) GO TO 35
KNC=KND+1

SD=SD+wWD

wWO=DELG(JT+1)}
PD=WD*(2.-WD}

IF (PD.EQ.G.) GO TO 36
KND=KND+2

SD=SD+24%*WD

CELG(J)=SD

IF (KND.LE.l) GO TO 5
XKND=KND

¢O0 Y0 37

TYPE 4 POINT
WD=DELG(JT)
FD=WD*(2.~WD)

IF (PD.EQ.O.) GO TO 38
KND=KND+1

SD=SD+WD

PD=DELG(JT+1)
FO=WD*(2.,-WD)

If (PD.EQ.D.) 50 TO 39
KND=KND+1

SD=SD+wD

wWO=DELG(J+1)
FO=WD*{2.~WD)

IF (PD.EQ.0O.) GO TO 29
KND=KND+1

SD=SD+WD

CO TO 29

IF (WYP-6,) 51,52,53
TYPE S5 POINTS
wD=DELG(J-1)
FD=WD%*(2+.~WD)

IF (PD.EQ.0.) GO TD 54
KND=KND+1

$D=SD+WD
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54

55

56

52

72

53
4C

61

64

62

66

63

65

¥D=DELG(JT-1)
FD=WD*{2.,-WD)

IF (PD.EQ.G.) GO TD 55
KND=KND+1

SD=SD+WD

wD=DELG(JT)
FD=WD*(2.~WD)

IF (PD.EQ.O.) GO YO 56
KND=KND+1}

€D=SD+WD

RO=DELG{JT+1)
FD=WD%(2.-WD) )
IF (PD.EQ.C.) GO TD 36
KND=KND+1

€D=SD+WD

€0 TO 36

TIYPE 6 POINTS
wD=DELG(JB+]1)
FD=WD%(2.,-KWD)

1F (PD.EQ.D.) GO TO 72
KND=KND+1

SD=SD+WD

WD=DELG(JT+1)
FD=WD*(2.~-WD)

IF ‘PD.EQ.D.) GO TO 29
KNC=KND+2

€D=SD+2. *WD

€0 YO 29

WRITE (6440) JyWTP

FORMAT (22H PLASTIC BORDFH POINT 15,F5.0)

IF (WTP-8,) 61,462,63
TYPE 7 POINTS
WD=DELG(JT-1)
PO=WD%(2,-WD)

IF (PD.EQ.O.) GO TO 64
SD=SD+WD

KND=KND+1

»DO=DELG(JT)
FD=WD*(2+~WD)

IF (PD.EQ.C.) GO TO 62
SD=SD+WD

KND=KND+1

vD=DELG(J-1)
PD=WD*{2.-WD)

IF (PD.EQ.0.) GO TO 66
SD=SD+WD

KND=KND+1
wD=DELG(JB-1)
PD=WD*(2.-WD)

IF (PD.EQ.0.) GO TO 36
SD=SD+WD

KND=KND+1

CO TO 36

IF (WTP-104) 5,465,67
TYPE 10 POINTS
wWD=DELG(J-1)
PO=WD®(2.-WD)

IF (PD.EQ.0O.) GO TO 68
$D=SDO4+WD

KND=KND+1
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68

67

69

71

WD=DELG(JB~1)
FD=WD®(2.~-WD)

IF (PD.EC.0.) GO TO 29
SD=SD+WD

KND=KND+1

¢0 10 29

TYPE 11 POINTS
wD=DELG(JT~1)
FO=uD%(2.,-WD)

IF (PD.EQ.0.) GO TO 69
SD=SD+WD

KND=KND+1

WD=DELG(JT)
PD=WD%(2.-WD)

IF (PD.EQ.0.) GO TO 71
SD=SD+WD

KND=KND+1

WD=DELG{J-1)
PD=WD*(2.-WD)

IF (PD.EQ.D.) GO TO 36
SO=SD+WD

KND=KND+1

CO YO 36

CONTINUE

RETURN

END

$IBFTC GCALGR DECK

OO0

HwN

b wN N

SUBROUTINE GCALG

COMMON AALCONTST,C2,CSM,C1M,CGM,CGB,CGC,CRFP,DAY,DNMM, FMM,
ITER KL sKM,KLOAD yNyN2 NP {N2P N7 ,N8 ,NMW,NMWP s NXCL ¢ NYCL,NCELL,
AMWHyNMAX,PI,P]I4,PI8,PLM,Q,0BG,Q1l,R(140),TIMA,TIMB, TMTGOF,
TSTC o XMINsXMEW

COMMON FX{220),PHIB(22D),L(220),XB(220),YB(220}

REAL KLOAD

COMMON /STRES/ SX{(400),S5Y(400),SXY(400),522(400),SIGEQ(400),
TEX(400) ,TEY(400),TEXY(400)

COMMON /GDCOM/ ABC(1),AREA{400),AGSUM(2,400),C0SW{400),
COIT(B800)CLX(400),CLY(400),CGSW(400),DEPX(400),DEPY(400),
CEPXY(400),DEPYN(400),DELG(40C),ETAB(221),EPX(400),EPY(430),
EPXY(400),GBAS(400),GOLD(400),M(220),TYPE(4CD),
RS(140),RH{140),RSAV(140),SIGE(400),WDR(140),XIB{221)

REAL LM

CCMPUTE DELG AND GBAS+DELG=GNEW
OELG IS THE PART OF G THAT DEPENDS ON CURRENT PLASTIC STRAIN TNCREMENTS
(CEPXyaanes

GNEW=GBAS+DELG

IF (NR.EQ.5) GO TO 21
CGA=SQRT(2.}/3.

AR=5

REWIND 8

READ (8) (ABC{(K),K=1,NMAX)
READ (B8} {SX(K),K=1,1200G)
CO 6 J=1,NCELL

IF (AREA{J),LE.Q.) GC TO 61

CCMPUTE EQUIVALENT MOOIFIED TOTAL STRAIN EPET

SX{J)=SX(J)/Pi8
SY(J)=SY(J)/PIB
EXY(J)==-SXY(J)/PI8

€2=0. -
EXE=SX{J)=-XMEW*(SY(J)+S2Z)
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EYE=SY{J)=-XMEW®(SX(J)+S52Z)
EZE=SZ-XMEW*(SX(J)+SY{J))}
EXYE={1le+XMEW)XSXY(J)
TEX(J)=EXE+EPX(J)+DEPX(J)
TEY(J)=EYE+EPY(J)+DEPY(J)
TEZ=EZE-EPX(J)-EPY(J)-DEPX(J}=DEPY(J)
TEXY{J)=EXYE+EPXY(J)+DEPXY (J)
1IF (J.NE.185) GO YO 51
XH=CLY(172)-CLY(171)
XK=CLX(1841-CLX(172)
CXSX=(SX{184)~SX(1601)}/ (24 %*XK)
CXSXY=(SXY(184)=-SXY(160))/(2.%XK)
CYSY=(SY(173)-SY(171)}/ (24 %XH)
CYSXY=(SXY(L173)~-SXY{171))/{2.%XH)
EQS1=DXSX¥DYSXY
RAT1=-DXSX/DYSXY
. EQS2=DXSXY+DYSY
RAT2=-DYSY/DXSXY
WRITE (6,52) DXSX,DYSXY,EQS1,RAT]
WRITE (6,52) DYSY,DXSXY,EQS2,RAT2
52 FORMAT (12H EQUILIBRIUM 1P4EL16,6)
CYTX={TEX(173)-2,*TEX{LT72)+TEX(171))/XH**%2
CXTY=(TEY(184)-2.*TEY{1T72)+TEY{160)}/XK%*2
CXYTXY=-oS®(TEXY(159)}+TEXY(185)-TEXY{161})-TEXY(183))/(XH*=XK)
. COMP=DYTX#DXTY+DXYTXY
WRITE (6453) DYTX,DXTY,DXYTXY,COMP,TEX(172),TEY(12T2),TFXY{172)
.53 FORMAT (154 COMPATIBILITY 1P7€E12.4)
: IMAX=GBAS(NCELL+1)
NC4=NCELL¥4
IF {ITER.NE.QO) GO TO 611
READ (5,62) IMAX,IGMX
62 FORMAT (415)
CBAS(NCELL+1)=IMAX
GBAS(NCELL+4)=IGMX
CBAS(NCELL+2)=1.

CLAST=0.

CBAS(NCELL+3)=DLAST
611 WRITE (6463) (GBAS{K), K=NCELL,NC4)
63 FORMAT (S5H IMAX 6F9.1)
51 S22(J4)=TEZ

SES=e5%( (SX(JI=SY(J) ) ##24(SY(J)=SZ)#&24(SI-SX(J))#%2+
2 € ASXY(J)®%2)
SIGEQ(J) =SQRT(SES)
EXPR=EXE+DEPX(J)
EYPR=EYE+DEPY(J)
EZPR=E2E-DEPX(J)-DEPY(J)
EXYPR=EXYE+DEPXY(J) A
EPET=SQRT (64 *EXYPR**2+ (EXPR-EYPR)##2+(EXPR-EZPR)*#2+(EYPR~
2 EZPR)#%2)#CGA
C COMPUTE EFFECTIVE PLASTIC STRAIN INCREMENT DEPEFF
CEPEFF=(EPET-CGMSSIGE(J) ) /DNMM
C CGMPUTE NEW PLASTIC STRAIN INCREMENTS DEPXseesse
42 CELG(J)=DEPEFF
IF (DEPEFF.LE.D.) GO TO 61
CW=DEPEFF/(3.*EPET)
LEPX(J)=DW* (2. *EXPR-EYPR-EZPR)
CEPYN{J)=DW* (2, *EYPR-EXPR=EZPR)
CEPXY(J) =3, *DWSEXYPR
€0 T0 6
61 CEPYN(J1=0.



11
12

41

21

66

65

72

71

CEPX(J})=0.
CEPXY(J) =0,

CONTINUE

ALB=NCELL

CO 11 J=1,NLB.NYCL
JE=J+NYCL~1

WRITE (6+12) (DELGIK)K=JyJE)
FORMAT (3X,1P10E12.4)

CO 41 J=1,NCELL

IF (DELG(J)4LT.0.) DELG(J)=0.
IF (DELG(J)«GT40.) DELGUJ)=2,
CONTINUE '
RETURN

1SUM=00

€O 4 J=1,NCELL

IF (DELG{J).EQ.0.) GO YO 4
CAR=DELG (J)*AREA{J)

WRITE (6414) JyDARsSIGEQUJI)»SX{IVoSY(JI)3SXY(J)},DEPX(J),
CEPYN(J) 4DEPXY(J)

FORMAY (14H NONZERO DELG I5,1P8E12.4)
CONTINUE

NINROW=GBAS (NCELL+2)
CLAST=GBAS{NCELL+3)
AL=GBASINCELL+5)

IF (NINROW.LT.IMAX) GO TO 64
L0 65 J=1,NCELL
CW=DEPY(J)L+EPY(J)

IF (DW.NE,0.) 30 TO 65
CN=DEPYNI(J)

IF (DN.EQ.0.) GO TO 65

WRITE (6466) JyDEPX(J),DN,DEPXY(J),DELG(J)
FORMAT (6H DROP ,15,41P4E1646)
CEPYN(J)=Q.

CEPX(J4)=0,

CEPXY(J)=0.

CELG(J) =0,

CONTINUE

CSUM=°0

CO 7 J=1,NCELL

IF (AREA(J).LE.Q0.) GC TO 7
COLD(J)=DELG(J)+GBAS(J)

IF (TYPE(J).EQe4s) GO TO 22
CELY=ABS (DEPY(J)~-DEPYN(J))
TSUM=TSUM#DELY

IF (DEPYN(J).EQ.0.) GO TO 22
CSUM=DSUM+1,

CEPY(J)=DEPYN{J)

CONTINUE

ITER=ITER¥]

CEN=DSUM

IF (DEN.LE.O.) DEN=TSTC

IF (NINROW.GE.IMAX) GO TQ 71
IF (DSUM.NE.DLAST} GC TO 72
GBAS(NCELL+2)=NINROW+1

GO T0 71

CBAS(NCELL+2)=1,.

CLAST=DSUM
CBAS(NCELL+3)=DLAST
PCT=TSUM/DEN

IF (PCT.LT.TSTC) CONTST=1,+CONTST
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CALL TIMEL(TIMB)

IF (TIMB.LT.TIMA) TIMB=TIMB+DAY
TIME=(TIMB-TIMA) /XMIN :
IF (TIMB.GT.TMTGOF) CONTST=CONTST+.1:
TIML=TMTGOF-TIMB

RRITE (6436) ITER,TSUM,DSUM,PCT,TIME,TIML
FORMAT (18H CONVERGENCE TEST [5,1P5E12.4)
REWIND 8

WRITE (8) (ABC(K),K=1,NMAX]}

WRITE (8} (SX(K),K=1,3200)

END FILE 8 '

ISW=3%(ITER/3)~ITER

IF (ISW.LT,0) RETURN

K=NCELL

CALL BCDUMP (GOLD(1),GOLD(K))

CALL BCDUMP (DEPX{1),DEPX(K))

CALL BCDUMP (DEPY{1),DEPY(K))

CALL BCDUMP (DEPXY(1),DEPXY(K))

WRITE (6,36) ISW

RETURN

END

$1BFTC TRMNLR DECK

17

13

14

HSwn

wmbwn N

SUBROUTINE TRMNL

COMMON AA,CONTST,C2,4CSM,C1M,CGM,CGB,CGCyCRFP,DAY,DNMM, EMM,
ITER KL KMy KLOAD yNy N2y NP yN2P yNT 4 N8 ¢ NMW, NMWP 4y NXCL,NYCL,NCELL,
AMWH,NMAX,PI,PI4,PIB,PLM,Q,Q8G,Q1,R(140),TIMA,TIMB, TMTGOF,
ISTC, XMIN,XMEW

COMMON FX({220),PHIB(220),L(220),XB8(220),YB(220)

REAL KLOAD

COMMON /STRES/ SX{400),SY(400),SXY(400),S2Z(4C0Y,SIGEQ(400),
TEX{400) ,TEY(400),TEXY{40)

COMMON /GDCOM/ ABC(1),AREA(400),AGSUM(2,400),C0OSW(400},
COIT(800),CLX(400),CLY(400),CGSW(400),DEPX(420),DEPY(400),
CEPXY{(400) ,DEPYN(400),DELG(400),ETAB(221)4,EPX(400),EPY(400),
EPXY{4DD),GBAS(400),G0LD(400),4M(220),TYPE(40TD),
RS(140),RH(140)4RSAV(140),SIGE(400),WDR(1401},XIB(221)

REAL L,M

WRITE (6,17) AA,KLOAD,CONTST

FORMAT (30H TERMINAL CALCULATIONS FOR A K 3F12.5)

WRITE (6,413)

131

FORMAT (1H1 46Xy 1HJ 96Xy lHX3 7X41HY 19Xy 1HGy 12Xy 3HEPX, 11Xy 4HDEPX,

10Xy3HEPY 11X 4HDEPY ;10X y4HEPXY 49X, SHDEPXY)

CO 1 J=1,NCELL

GBAS(J)=GOLD(J)

GOLD(J)=GOLD(J)+DELG(J)

EPX{J)=EPX{J)+DEPX(J)

EPY(J)=EPY(J)+DEPY(J)

EPXY(J)=EPXY(J)+DEPXY(J)

SIGE(J)=SIGEQ(J)

IF (SIGE(J)eLTals) SIGE(J)=1.

WRITE (6,12) J,CLX(J),CLY(J),GBAS(J)

+'EPX(J),DEPX{J) JEPY(J),DEPY(J),EPXY(J),DEPXY(J)

FORMAT (5X4154,2F84541P7E14.5)

CONTINUE

WRITE (6,14) -

FORMAT (1H1,6Xs1HI 37X, 4HSIGE 12X ,2HSX12X92HSY 412X, 2HSZ,12X,
2HSXY s 11X 3HTEX 11X 3HTEY, 11Xy 4HTEXY)

€O 2 J=1,NCELL

WRITE (6415) JySIGEQ(I) ySX(JIVeSY(I)SZZ(I) 4 SXY(IIHTEX(JI),
TEY(J),TEXY(J)
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FORMAT (5XI5,1PE1l645,7E14.5)
CONTINUE
K=NCELL

C HAS PROCESS CONVERGED

IF (CONTST.LT.l.) GO TO 11

€ YES~-COMPUTE AND DUMP GBAS,EPX,EPY,EPXY,SIGE

23

16
11

22

CALL BCDUMP (GBAS(1),GBAS(K))
CALL BCDUMP {(EPX (1),EPX (K})
CALL BCDUMP (EPY (1) 4EPY (K))
CALL BCDUMP (EPXY(1),EPXY({K)})
CALL BCDUMP (SIGEQ(1),SIGEQ(K))
CALL BCDUMP (GOLD(1),GOLD(K))
CALL BCOUMP (DEPX(1),DEPX(K})
CALL BCDUMP (DEPY(1l),DEPY(K))
CALL BCDUMP (DEPXY(1),DEPXY(K))
CALL BCDUMP (TEX (1),TEX (K))
CALL BCDUMP (TEY (1),TEY (K))
CALL BCOUMP (TEXY(1),TEXY{K))
CALL BCDUMD (SX(1)4SX{K})

CALL BCDUMP (SY({1),SY(K))

CALL BCDUMP (SXY(1),SXY(K))
k=133

CO 23 J=3414394,2

SY(J)1=SY(K)

SY(J+1)=CLX(K)}

K=K+12

CALL BCOUMP (SY(341),5Y(394)})
CALL BCOUMP (R({1),R{NMW))

IF (CONTST.GT.l.) GO TO 22
REWIND 8

WRITE (8) (ABC{K)j K=1,NMAX]}

END FILE 8

RETURN

K=NCELL

CALL BCDUMP (GBAS(1),GBAS{K))
CALL BCDUMP (DEPX (1),DEPX (K1}}
CALL BCDUMP (DEPY (1),DEPY (K))
CALL BCDUMP (DEPXY(1)sDEPXY(K))
sTCP

END
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